Acta Informatica

, Volume 52, Issue 4–5, pp 443–482 | Cite as

Compositional construction of most general controllers

  • Joachim Klein
  • Christel Baier
  • Sascha Klüppelholz
Original Article

Abstract

Given a system \({\fancyscript{A}}\) and an objective \(\varPhi \), the task of controller synthesis is to design a decision making policy that ensures \(\varPhi \) to be satisfied. This article deals with transition system-like system models and controllers that base their decisions on the observables of the actions performed so far. We present a framework for the compositional construction of controllers for conjunctive sequences of linear-time objectives in an online manner. For this approach, it is crucial that the controllers enforce the objectives in a most general manner, being as permissive as possible. We then present game-based algorithms for the construction of such most general controllers for invariance, reachability and \(\omega \)-regular objectives.

References

  1. 1.
    Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive systems. In: 16th Colloquium on Automata, Languages and Programming (ICALP’89), LNCS, vol. 372, pp. 1–17. Springer (1989)Google Scholar
  2. 2.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of switching controllers for linear systems. IEEE Spec. Issue Hybrid Syst. 88, 1011–1025 (2000)Google Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed systems. In: Hybrid Systems II, LNCS, vol. 999, pp. 1–20. Springer (1995)Google Scholar
  5. 5.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for components and connectors. In: 7th Symposium on Formal Methods for Components and Objects (FMCO’08), LNCS, vol. 5751, pp. 82–101. Springer (2008)Google Scholar
  6. 6.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for modeling and verifying components and connectors. In: 11th Conference on Coordination Models and Languages (COORD’09), LNCS, vol. 5521, pp. 247–267. Springer (2009)Google Scholar
  7. 7.
    Baier, C., Klein, J., Klüppelholz, S.: A compositional framework for controller synthesis. In: 22nd Conference on Concurrency Theory (CONCUR’11), LNCS, vol. 6901, pp. 512–527. Springer (2011)Google Scholar
  8. 8.
    Baier, C., Klein, J., Klüppelholz, S.: Modeling and verification of components and connectors. In: 11th International School on Formal Methods for the Design of Computer, Communication and Software Systems (SFM’11), LNCS, vol. 6659, pp. 114–147. Springer (2011)Google Scholar
  9. 9.
    Baier, C., Klein, J., Klüppelholz, S.: Synthesis of Reo connectors for strategies and controllers. Fundam. Inform. 130(1), 1–20 (2014)MATHGoogle Scholar
  10. 10.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety games. RAIRO Theor. Inf. Appl. 36(3), 261–275 (2002)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Berwanger, D., Chatterjee, K., Wulf, M.D., Doyen, L., Henzinger, T.A.: Strategy construction for parity games with imperfect information. Inf. Comput. 208(10), 1206–1220 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Berwanger, D., Doyen, L.: On the power of imperfect information. In: 28th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’08), Leibniz International Proceedings in Informatics, vol. 2, pp. 73–82. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2008)Google Scholar
  14. 14.
    Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bouyer, P., Duflot, M., Markey, N., Renault, G.: Measuring permissivity in finite games. In: 20th Conference on Concurrency Theory (CONCUR’09), LNCS, vol. 5710, pp. 196–210. Springer (2009)Google Scholar
  16. 16.
    Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring permissiveness in parity games: Mean-payoff parity games revisited. In: 9th Symposium on Automated Technology for Verification and Analysis (ATVA’11), LNCS, vol. 6996, pp. 135–149. Springer (2011)Google Scholar
  17. 17.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)MATHCrossRefGoogle Scholar
  18. 18.
    Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: 17th Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10), LNCS, vol. 6397, pp. 1–14. Springer (2010)Google Scholar
  19. 19.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for synthesis. In: 19th Conference on Concurrency Theory (CONCUR’08), LNCS, vol. 5201, pp. 147–161. Springer (2008)Google Scholar
  20. 20.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians (ICM’62), pp. 23–35. Institut Mittag-Leffler (1963)Google Scholar
  21. 21.
    Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: 12th Symposium on Logic in Computer Science (LICS’97), pp. 99–110. IEEE Computer Society Press (1997)Google Scholar
  22. 22.
    Ehlers, R., Finkbeiner, B.: Reactive safety. In: 2nd Symposium on Games, Automata, Logics and Formal Verification (GandALF’11), EPTCS, vol. 54, pp. 178–191 (2011)Google Scholar
  23. 23.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In: 29th Symposium on Foundations of Computer Science (FOCS’88), pp. 328–337. IEEE Computer Society Press (1988)Google Scholar
  24. 24.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Filiot, E., Jin, N., Raskin, J.F.: Compositional algorithms for LTL synthesis. In: 8th Symposium on Automated Technology for Verification and Analysis (ATVA’10), LNCS, vol. 6252, pp. 112–127. Springer (2010)Google Scholar
  26. 26.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS, vol. 2500. Springer (2002)Google Scholar
  27. 27.
    Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: 6th Conference on Formal Methods in Computer-Aided Design (FMCAD’06), pp. 117–124. IEEE Computer Society Press (2006)Google Scholar
  28. 28.
    Jobstmann, B., Galler, S.J., Weiglhofer, M., Bloem, R.: Anzu: A tool for property synthesis. In: 19th Conference on Computer Aided Verification (CAV’07), LNCS, vol. 4590, pp. 258–262. Springer (2007)Google Scholar
  29. 29.
    Klein, J.: Compositional synthesis and most general controllers. Ph.D. thesis, Technische Universität Dresden (2013). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130654
  30. 30.
    Kuijper, W., van de Pol, J.: Compositional control synthesis for partially observable systems. In: 20th Conference on Concurrency Theory (CONCUR’09), LNCS, vol. 5710, pp. 431–447. Springer (2009)Google Scholar
  31. 31.
    Kuijper, W., van de Pol, J.: Computing weakest strategies for safety games of imperfect information. In: 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’09), LNCS, vol. 5505, pp. 92–106. Springer (2009)Google Scholar
  32. 32.
    Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open systems in reactive environments: Control and synthesis. In: 11th Conference on Concurrency Theory (CONCUR’00), LNCS, vol. 1877, pp. 92–107 (2000)Google Scholar
  33. 33.
    Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: 18th Conference on Computer Aided Verification (CAV’06), LNCS, vol. 4144, pp. 31–44. Springer (2006)Google Scholar
  34. 34.
    Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: 2nd International Conference on Temporal Logic (ICTL’97), pp. 91–106. Kluwer Academic Publishers (1997)Google Scholar
  35. 35.
    Kupferman, O., Vardi, M.Y.: Synthesis of trigger properties. In: 16th Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10), LNCS, vol. 6355, pp. 312–331. Springer (2010)Google Scholar
  36. 36.
    Kupferman, O., Weiner, S.: Environment-friendly safety. In: 8th Haifa Verification Conference (HVC’12), LNCS, vol. 7857, pp. 227–242. Springer (2013)Google Scholar
  37. 37.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Model-based synthesis of control software from system-level formal specifications. ACM Trans. Softw. Eng. Methodol. 23(1), 6 (2014)CrossRefGoogle Scholar
  38. 38.
    Mohalik, S., Walukiewicz, I.: Distributed games. In: 23rd Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’03), LNCS, vol. 2914, pp. 338–351 (2003)Google Scholar
  39. 39.
    Morgenstern, A.: Symbolic controller synthesis for LTL specifications. Ph.D. thesis, Technische Universität Kaiserslautern (2010)Google Scholar
  40. 40.
    Morgenstern, A., Schneider, K.: Exploiting the temporal logic hierarchy and the non-confluence property for efficient LTL synthesis. In: 1st Symposium on Games, Automata, Logic, and Formal Verification (GandALF’10), Electronic Proceedings in Theoretical Computer Science, vol. 25, pp. 89–102. Elsevier (2010)Google Scholar
  41. 41.
    Neider, D., Rabinovich, R., Zimmermann, M.: Down the borel hierarchy: Solving Muller games via safety games. In: 3rd Symposium on Games, Automata, Logics and Formal Verification (GandALF’12), Electronic Proceedings in Theoretical Computer Science, vol. 96, pp. 169–182. Elsevier (2012)Google Scholar
  42. 42.
    Pinchinat, S., Riedweg, S.: You can always compute maximally permissive controllers under partial observation when they exist. In: 2005 American Control Conference (2005)Google Scholar
  43. 43.
    Pnueli, A.: The temporal logic of programs. In: 18th Symposium on Foundations of Computer Science (FOCS’77), pp. 46–57. IEEE Computer Society Press (1977)Google Scholar
  44. 44.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th ACM Symposium on Principles of Programming Languages (POPL’89), pp. 179–190. ACM (1989)Google Scholar
  45. 45.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: 31st Symposium on Foundations of Computer Science (FOCS’90), Volume II, pp. 746–757. IEEE Computer Society Press (1990)Google Scholar
  46. 46.
    Puchala, B.: Asynchronous omega-regular games with partial information. In: 35th Symposium on the Mathematical Foundations of Computer Science (MFCS’10), LNCS, vol. 6281, pp. 592–603. Springer (2010)Google Scholar
  47. 47.
    Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American Mathematical Society (1972)Google Scholar
  48. 48.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM J. Control Optim. 25(1), 206–230 (1987)MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Raskin, J.F., Chatterjee, K., Doyen, L., Henzinger, T.A.: Algorithms for \(\omega \)-regular games with imperfect information. Log. Methods Comput. Sci. 3(3:4), 1–23 (2007)Google Scholar
  50. 50.
    Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2), 274–301 (1984)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of reactive systems. STTT 15(5–6), 433–454 (2013)CrossRefGoogle Scholar
  52. 52.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, vol. III, pp. 389–455. Springer (1997)Google Scholar
  53. 53.
    Vardi, M.Y.: An automata-theoretic approach to fair realizability and synthesis. In: 7th Conference on Computer Aided Verification (CAV’95), LNCS, vol. 939, pp. 267–278. Springer (1995)Google Scholar
  54. 54.
    Wonham, W.M.: On the control of discrete-event systems. In: Three Decades of Mathematical System Theory, Lecture Notes in Control and Information Sciences, vol. 135, pp. 542–562. Springer (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joachim Klein
    • 1
  • Christel Baier
    • 1
  • Sascha Klüppelholz
    • 1
  1. 1.Technische Universität Dresden, Fakultät InformatikDresdenGermany

Personalised recommendations