Advertisement

Acta Informatica

, Volume 53, Issue 2, pp 149–170 | Cite as

Optimization in temporal qualitative constraint networks

  • Jean-François Condotta
  • Souhila Kaci
  • Yakoub Salhi
Original Article
  • 150 Downloads

Abstract

Various formalisms for representing and reasoning about temporal information with qualitative constraints have been studied in the past three decades. The most known are definitely the Point Algebra \((\mathsf {PA})\) and the Interval Algebra \(({\mathsf {IA}})\) proposed by Allen. In this paper, for both calculi, we study a problem that we call the minimal consistency problem \((\mathsf {MinCons})\). Given a temporal qualitative constraint network \((\mathsf {TQCN})\) and a positive integer \(k\), this problem consists in deciding whether or not this \(\mathsf {TQCN}\) admits a solution using at most \(k\) distinct points on the line.We show that \(\mathsf {MinCons}\) for \(\mathsf {PA}\) can be encoded into the finitary versions of Gödel logic. Furthermore, we prove that the \(\mathsf {MinCons}\) problem is \(\mathsf {NP}\)-complete for both \(\mathsf {PA}\) and \({\mathsf {IA}}\), in the general case. However, we show that for \(\mathsf {TQCN}\)s defined on the convex relations, \(\mathsf {MinCons}\) is polynomial. For such \(\mathsf {TQCN}\)s, we give a polynomial method that allows one to obtain compact scenarios.

References

  1. 1.
    Allen, J.F.: An interval-based representation of temporal knowledge. In: IJCAI (1981)Google Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Amaneddine, N., Condotta, J.-F., Sioutis, M.: Efficient approach to solve the minimal labeling problem of temporal and spatial qualitative constraints. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), Beijing, China, 3–9 Aug (2013)Google Scholar
  4. 4.
    Avron, A.: A tableau system for Gödel–Dummett logic based on a hypersequent calculus. In: TABLEAUX, pp. 98–111 (2000)Google Scholar
  5. 5.
    Baaz, M., Ciabattoni, A., Fermüller, C.G.: Cut elimination for first order Gödel logic by hyperclause resolution. In: LPAR, pp. 451–466 (2008)Google Scholar
  6. 6.
    Beeson, M.J.: Foundations of Constructive Mathematics. Modern Surveys in Mathematics. Springer, Berlin (1984)Google Scholar
  7. 7.
    Boutilier, C.: Toward a logic for qualitative decision theory. In: KR’94, pp. 75–86 (1994)Google Scholar
  8. 8.
    Condotta, J.-F., Kaci, S.: Compiling preference queries in qualitative constraint problems. (à paraitre). In: Proceedings of the 26th International FLAIRS Conference (FLAIRS’13) (to appear) (2013)Google Scholar
  9. 9.
    Drakengren, T., Jonsson, P.: A complete classification of tractability in Allen’s algebra relative to subsets of basic relations. Artif. Intell. 106(2), 205–219 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24(2), 97–106 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractibility, A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Hajek, P.: The Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Huang, J., Li, J.J., Renz, J.: Decomposition and tractability in qualitative spatial and temporal reasoning. Artif. Intell. 195, 140–164 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaci, S., van der Torre, L.: Reasoning with various kinds of preferences: logic, non-monotonicity and algorithms. Ann. Oper. Res. 163(1), 89–114 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Larchey-Wendling, D.: Counter-model search in Gödel–dummett logics. In: IJCAR, pp. 274–288 (2004)Google Scholar
  16. 16.
    Larchey-Wendling, D.: Bounding resource consumption with Gödel–Dummett logics. In: LPAR, pp. 682–696 (2005)Google Scholar
  17. 17.
    Ligozat, G.F.: On generalized interval calculi. In: Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI’91), pp. 234–240. American Association for Artificial Intelligence (July 1991)Google Scholar
  18. 18.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nebel, B.: Solving hard qualitative temporal reasoning problems: evaluating the efficienty of using the ORD-Horn class. In: ECAI (1996)Google Scholar
  20. 20.
    Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. JACM 42, 43–66 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Nökel, K.: Temporally distributed symptoms in technical diagnosis. LNCS 517, 1–184 (1991)zbMATHGoogle Scholar
  22. 22.
    Nökel, K.: Temporally Distributed Symptoms in Technical Diagnosis, vol. 517 of Lecture Notes in Computer Science. Springer, Berlin(1991)Google Scholar
  23. 23.
    Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: Proceedings of the 11th International Conference Principles and Practice of Constraint Programming (CP’05), Sitges, Spain, vol. 3709 of Lecture Notes in Computer Science, pp. 534–548 (2005)Google Scholar
  24. 24.
    The, A.N., Tsoukiàs, A.: Numerical representation of PQI interval orders. Discrete Appl. Math. 147(1), 125–146 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, an Introduction. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  26. 26.
    Van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Comput. Intell. 6, 133–144 (1990)CrossRefGoogle Scholar
  27. 27.
    Vilain, M., Kautz, H.: Constraint Propagation Algorithms for Temporal Reasoning. In: Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI’86), pp. 377–382 (1986)Google Scholar
  28. 28.
    Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for temporal reasoning: a revised report. In: Weld, D.S., de Kleer, J. (eds.) Readings in Qualitative Reasoning about Physical Systems, pp. 373–381. Morgan-Kaufman, San Mateo, CA (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jean-François Condotta
    • 1
  • Souhila Kaci
    • 2
  • Yakoub Salhi
    • 1
  1. 1.CRIL CNRS, UMR 8188Université Lille-Nord de FranceLensFrance
  2. 2.LIRMM CNRS, UMR 5506Université MontpellierMontpellierFrance

Personalised recommendations