Advertisement

Acta Informatica

, Volume 52, Issue 1, pp 61–106 | Cite as

Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes

  • Marco Bernardo
  • Rocco De NicolaEmail author
  • Michele Loreti
Original Article

Abstract

The logic PML is a probabilistic version of Hennessy–Milner logic introduced by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal nondeterminism. In this paper, two alternative interpretations of PML over nondeterministic and probabilistic processes as models are considered, and two new bisimulation-based equivalences that are in full agreement with those interpretations are provided. The new equivalences include as coarsest congruences the two bisimilarities for nondeterministic and probabilistic processes proposed by Segala and Lynch. The latter equivalences are instead known to agree with two versions of Hennessy–Milner logic extended with an additional probabilistic operator interpreted over state distributions in place of individual states. The new interpretations of PML and the corresponding new bisimilarities are thus the first ones to offer a uniform framework for reasoning on processes that are purely nondeterministic or reactive probabilistic or that mix nondeterminism and probability in an alternating/nonalternating way.

Notes

Acknowledgments

We are grateful to the anonymous referees for their stimulating comments. We would like to thank Devis Abriani for his useful suggestions on the proof of the coarsest congruence results. This work has been partially supported by the FP7-IST-FET Project ASCENS, grant no. 257414, by the EU Project QUANTICOL, grant no. 600708, and by the MIUR-PRIN Project CINA.

References

  1. 1.
    Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually works: the temporal logic of stochastic systems. In: Proceedings of the 7th International Conference on Computer Aided Verification (CAV 1995), vol. 939 of LNCS, pp. 155–165. Springer, Berlin (1995)Google Scholar
  2. 2.
    Baier, C., Kwiatkowska, M.: Domain equations for probabilistic processes. Math. Struct. Comput. Sci. 10, 665–717 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types. Theor. Comput. Sci. 327, 3–22 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences. Inf. Comput. 225, 29–82 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bernardo, M., De Nicola, R., Loreti. M.: Group-by-group probabilistic bisimilarities and their logical characterizations. In: Proceedings of the 8th International Symposium on Trustworthy Global Computing (TGC 2013), vol. 8358 of LNCS, pp. 315–330. Springer, Berlin (2013)Google Scholar
  6. 6.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Proceedings of the 15th International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1995), vol. 1026 of LNCS, pp. 499–513. Springer, Berlin (1995)Google Scholar
  7. 7.
    Browne, M.C., Clarke, E.M., Grümberg, O.: Characterizing finite Kripke structures in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition systems for continuous state spaces and non-determinism. In: Proceedings of the 8th International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2005), vol. 3441 of LNCS, pp. 125–139. Springer, Berlin (2005)Google Scholar
  9. 9.
    Cîrstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. Comput. J. 54, 31–41 (2011)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Progr. Lang. Syst. 8, 244–263 (1986)CrossRefzbMATHGoogle Scholar
  11. 11.
    Crafa, S., Ranzato, F.: A spectrum of behavioral relations over LTSs on probability distributions. In: Proceedings of the 22nd International Conference on Concurrency Theory (CONCUR 2011), vol. 6901 of LNCS, pp. 124–139. Springer, Berlin (2011)Google Scholar
  12. 12.
    D’Argenio, P.R., Wolovick, N., Sanchez Terraf, P., Celayes, P.: Nondeterministic labeled Markov processes: bisimulations and logical characterizations. In: Proceedings of the 6th International Conference on the Quantitative Evaluation of Systems (QEST 2009), pp. 11–20. IEEE-CS Press (2009)Google Scholar
  13. 13.
    de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations and metrics. Log. Methods Comput. Sci. 4(3:7), 1–28 (2008)Google Scholar
  14. 14.
    De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42, 458–487 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press, London (1970)zbMATHGoogle Scholar
  16. 16.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Inf. Comput. 179, 163–193 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled Markov processes. Inf. Comput. 184, 160–200 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for pCTL*. Inf. Comput. 208, 203–219 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theor. Comput. Sci. 221, 271–293 (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    Giry, M.: A categorical approach to probability theory. In: Proceedings of the International Conference on Categorical Aspects of Topology and Analysis, vol. 915 of LNM, pp. 68–85. Springer, Berlin (1981)Google Scholar
  21. 21.
    Goldblatt, R.: Deduction systems for coalgebras over measurable spaces. J. Log. Comput. 20, 1069–1100 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS 1990), pp. 278–287. IEEE-CS Press (1990)Google Scholar
  23. 23.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6, 512–535 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Asp. Comput. 24, 749–768 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32, 137–162 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical characterization. Inf. Comput. 209, 154–172 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hughes, G.E., Creswell, M.J.: An Introduction to Modal Logic. Methuen, London (1977)Google Scholar
  28. 28.
    Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. Sci. Comput. Progr. 28, 171–192 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384 (1976)CrossRefzbMATHGoogle Scholar
  30. 30.
    Klin, B.: Coalgebraic modal logic beyond sets. In: Proceedings of the 23rd International Conference on the Mathematical Foundations of Programming Semantics (MFPS 2007), vol. 173 of ENTCS, pp. 177–201. Elsevier, Amsterdam (2007)Google Scholar
  31. 31.
    Kurz, A., Palmigiano, A., Venema, Y.: Coalgebra and logic: a brief overview. J. Log. Comput. 20, 985–990 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Larsen, K.G., Skou, A.: Compositional verification of probabilistic processes. In: Proceedings of the 3rd International Conference on Concurrency Theory (CONCUR 1992), vol. 630 of LNCS, pp. 456–471. Springer, Berlin (1992)Google Scholar
  34. 34.
    Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilistic systems. In: Proceedings of the 10th International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2007), vol. 4423 of LNCS, pp. 287–301. Springer, Berlin (2007)Google Scholar
  35. 35.
    Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Proceedings of the 11th International Conference on Concurrency Theory (CONCUR 2000), vol. 1877 of LNCS, pp. 334–349. Springer, Berlin (2000)Google Scholar
  36. 36.
    Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–245 (1963)CrossRefzbMATHGoogle Scholar
  37. 37.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis (1995)Google Scholar
  38. 38.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Proceedings of the 5th International Conference on Concurrency Theory (CONCUR 1994), vol. 836 of LNCS, pp. 481–496. Springer, Berlin (1994)Google Scholar
  39. 39.
    Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models. In: Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 44–53. IEEE-CS Press (2005)Google Scholar
  40. 40.
    Sokolova, A., de Vink, E.P.: Probabilistic automata: System types, parallel composition and comparison. In: Validation of Stochastic Systems, vol. 2925 of LNCS, pp. 1–43. Springer, Berlin (2004)Google Scholar
  41. 41.
    Song, L., Zhang, L., Godskesen, J.C., Nielson, F.: Bisimulations meet PCTL equivalences for probabilistic automata. Log. Methods Comput. Sci. 9(2:7), 1–34 (2013)MathSciNetGoogle Scholar
  42. 42.
    Tracol, M., Desharnais, J., Zhioua, A.: Computing distances between probabilistic automata. In: Proceedings of the 9th International Workshop on Quantitative Aspects of Programming Languages (QAPL 2011), vol. 57 of EPTCS, pp. 148–162 (2011)Google Scholar
  43. 43.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science (FOCS 1985), pp. 327–338. IEEE-CS Press (1985)Google Scholar
  44. 44.
    van Benthem, J.: Modal Correspondence Theory. PhD Thesis (1976)Google Scholar
  45. 45.
    van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Inf. Comput. 121, 59–80 (1995)CrossRefzbMATHGoogle Scholar
  46. 46.
    Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proceedings of the 12th International Symposium on Protocol Specification, Testing and Verification (PSTV 1992), pp. 47–61. North-Holland (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco Bernardo
    • 1
  • Rocco De Nicola
    • 2
    • 3
    Email author
  • Michele Loreti
    • 4
  1. 1.Dipartimento di Scienze di Base e FondamentiUniversità di UrbinoUrbinoItaly
  2. 2.IMT, Institute for Advanced Studies LuccaLuccaItaly
  3. 3.Gran Sasso Science Institute L’Aquila (GSSI)L’AquilaItaly
  4. 4.Dipartimento di Statistica, Informatica, ApplicazioniUniversità di FirenzeFlorenceItaly

Personalised recommendations