Acta Informatica

, Volume 51, Issue 7, pp 473–497 | Cite as

Parameterized complexity of three edge contraction problems with degree constraints

  • Rémy Belmonte
  • Petr A. Golovach
  • Pim van ’t HofEmail author
  • Daniël Paulusma
Original Article


For any graph class \(\mathcal{H}\), the \(\mathcal{H}\)-Contraction problem takes as input a graph \(G\) and an integer \(k\), and asks whether there exists a graph \(H\in \mathcal{H}\) such that \(G\) can be modified into \(H\) using at most \(k\) edge contractions. We study the parameterized complexity of \(\mathcal{H}\)-Contraction for three different classes \(\mathcal{H}\): the class \(\mathcal{H}_{\le d}\) of graphs with maximum degree at most \(d\), the class \(\mathcal{H}_{=d}\) of \(d\)-regular graphs, and the class of \(d\)-degenerate graphs. We completely classify the parameterized complexity of all three problems with respect to the parameters \(k\), \(d\), and \(d+k\). Moreover, we show that \(\mathcal{H}\)-Contraction admits an \(O(k)\) vertex kernel on connected graphs when \(\mathcal{H}\in \{\mathcal{H}_{\le 2},\mathcal{H}_{=2}\}\), while the problem is \(\mathsf{W}[2]\)-hard when \(\mathcal{H}\) is the class of \(2\)-degenerate graphs and hence is expected not to admit a kernel at all. In particular, our results imply that \(\mathcal{H}\)-Contraction admits a linear vertex kernel when \(\mathcal{H}\) is the class of cycles.



We would like to thank Marcin Kamiński and Dimitrios Thilikos for fruitful discussions on the topic. We also thank the three anonymous referees of the conference version of this paper for insightful comments.


  1. 1.
    Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2), 197–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belmonte, R., Golovach, P. A., van ’t Hof, P., Paulusma, D.: Parameterized complexity of two edge contraction problems with degree constraints. In: IPEC 2013, LNCS 8246, pp. 16–27. Springer, Berlin (2013)Google Scholar
  3. 3.
    Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11, 71–79 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)CrossRefGoogle Scholar
  5. 5.
    Cai, L., Chen, J.: On the amount of nondeterminism and the power of verifying. SIAM J. Comput. 26, 733–750 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the structure of parameterized problems in NP. Inf. Comput. 123, 38–49 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs. In: IPEC 2013, LNCS 8246, pp. 97–109. Springer, Berlin (2013)Google Scholar
  8. 8.
    Cai, L., Guo, C.: Contracting graphs to split graphs and threshold graphs. Manuscript, arXiv:1310.5786
  9. 9.
    Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complexity theory. Theor. Comput. Sci. 339, 167–199 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diestel, R.: Graph Theory (Electronic Edition). Springer, Berlin (2005)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)CrossRefGoogle Scholar
  12. 12.
    Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77, 1141–1158 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval problems. Theor. Comput. Sci. 410, 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)Google Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  16. 16.
    Golovach, P.A., van ’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theor. Comput. Sci. 476, 38–46 (2013)Google Scholar
  17. 17.
    Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Increasing the minimum degree of a graph by contractions. Theor. Comput. Sci. 481, 74–84 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Inf. Process. Lett. 113(22–24), 906–912 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. Algorithmica 68(1), 109–132 (2014)Google Scholar
  20. 20.
    Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting chordal graphs and bipartite graphs to paths and trees. Discret. Appl. Math. 164(2), 444–449 (2014)Google Scholar
  21. 21.
    Heggernes, P., van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. SIAM J. Discret. Math. 27(4), 2143–2156 (2013)Google Scholar
  22. 22.
    Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a graph by the number of their components. Theor. Comput. Sci. 412, 6340–6350 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small induced subgraphs by contracting edges. In: IPEC 2013, LNCS 8246, pp. 243–254. Springer, Berlin (2013)Google Scholar
  25. 25.
    Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms 9(4), 30 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mathieson, L.: The parameterized complexity of editing graphs for bounded degeneracy. Theor. Comput. Sci. 411(34–36), 3181–3187 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78, 179–191 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discret. Algorithms 7, 181–190 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  31. 31.
    Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discret. Appl. Math. 152, 229–245 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Paz, A., Moran, S.: Nondeterministic polynomial optimization problems and their approximations. Theor. Comput. Sci. 15, 251–277 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67, 757–771 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32:1–32:8 (2010)Google Scholar
  35. 35.
    Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rémy Belmonte
    • 1
  • Petr A. Golovach
    • 1
  • Pim van ’t Hof
    • 1
    Email author
  • Daniël Paulusma
    • 2
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK

Personalised recommendations