Acta Informatica

, Volume 50, Issue 4, pp 289–295 | Cite as

On the hierarchy of distribution-sensitive properties for data structures

  • Amr Elmasry
  • Arash Farzan
  • John Iacono
Original Article


In this paper new dependencies are added to the hierarchy of the distribution-sensitive properties for data structures. Most remarkably, we prove that the working-set property is equivalent to the unified-bound property; a fact that had gone unnoticed since the introduction of such bounds in the Eighties by Sleator and Tarjan.


Priority Queue Natural Sequence Insertion Time Dynamic Search Static Finger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brodal, G.S., Fagerberg, R.: Funnel heap—a cache oblivious priority queue. In: Proceedings of the 13th International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 2518, pp. 219–228. Springer, Berlin (2002)Google Scholar
  2. Bǎdoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theor. Comput. Sci. 382(2), 86–96 (2007)CrossRefGoogle Scholar
  3. Cole, R.: On the dynamic finger conjecture for splay trees. Part II: finger searching. SIAM J. Comput. 30, 44–85 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Elmasry, A.: On the sequential access theorem and dequeue conjecture for splay trees. Theor. Comput. Sci. 314(3), 459–466 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Elmasry, A.: A priority queue with the working-set property. Int. J. Found. Comput. Sci. 17(6), 1455–1466 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Elmasry, A., Iacono, J., Farzan, A.: A unifying property for distribution-sensitive priority queues. In: Proceedings of the 22nd International Workshop on Combinatorial Algorithms. Lecture Notes in Computer Science, vol. 7056, pp. 209–222. Springer, Berlin (2011)Google Scholar
  7. Fischer, M.J., Paterson, M.: Fishspear: a priority queue algorithm. J. ACM 41(1), 3–30 (1994)zbMATHCrossRefGoogle Scholar
  8. Iacono, J.: Improved upper bounds for pairing heaps. In: Proceedings of the 7th Scandinavian Workshop on Algorithm Theory. Lecture Notes in Computer Science, vol. 1851, pp. 32–45. Springer, Berlin (2000)Google Scholar
  9. Iacono, J.: Distribution-sensitive data structures. Ph.D. Thesis, Rutgers, The state University of New Jersey, New Brunswick (2001)Google Scholar
  10. Iacono, J., Langerman, S.: Queaps. Algorithmica 42(1), 49–56 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  12. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Steele, J.M.: The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  14. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica 5(4), 367–378 (1985)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer Engineering and SystemsAlexandria UniversityAlexandriaEgypt
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Polytechnic Institute of New York UniverityBrooklynUSA

Personalised recommendations