Acta Informatica

, Volume 50, Issue 3, pp 199–228 | Cite as

Verifying a simplification of mutual exclusion by Lycklama–Hadzilacos

Original Article

Abstract

A simplification of the mutual exclusion algorithm of Lycklama and Hadzilacos (ACM Trans Program Lang Syst 13:558–576, 1991) is presented. It uses only four nonatomic shared bits per thread to guarantee mutual exclusion with the first-come-first-served property. The algorithm is verified by assertional methods, aided by the proof assistant PVS. A variation with five bits per thread is also given. This variation may give better performance when the number of threads is large. The use of the proof assistant made it easy to transfer the proof of the main algorithm to the variation.

References

  1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82, 253–284 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. Abraham, U.: Bakery algorithms. In: Proceedings of the Concurrency, Specification, and Programming, Workshop, pp. 7–40 (1993)Google Scholar
  3. Anderson, J.H., Gouda, M.G.: Atomic semantics of nonatomic programs. Inf. Process. Lett. 28, 99–103 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. Anderson, J.H., Kim, Y.J., Herman, T.: Shared-memory mutual exclusion: major research trends since 1986. Discret. Comput. 16, 75–110 (2003)Google Scholar
  5. Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming. Addison Wesley, Reading (2000)Google Scholar
  6. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of Sequential and Concurrent Programs. Springer, New York (2009)MATHCrossRefGoogle Scholar
  7. Aravind, A.A., Hesselink, W.H.: A queue based mutual exclusion algorithm. Acta Inf. 46, 73–86 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. Aravind, A.A., Hesselink, W.H.: Nonatomic dual bakery algorithm with bounded tokens. Acta Inf. 48, 67–96 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. Ashcroft, E.: Proving assertions about parallel programs. J. Comput. Syst. Sci. 10, 110–135 (1975)MathSciNetMATHCrossRefGoogle Scholar
  10. Burns, J.E.: Complexity of Communication Among Asynchronous Parallel Processes. Ph.D. Thesis, School of Information and Computer Science, Georgia Institute of Technology (1981)Google Scholar
  11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  12. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification, Introduction to Compositional and Noncompositional Methods. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  13. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8, 569 (1965)CrossRefGoogle Scholar
  14. Dijkstra, E.W.: Co-operating sequential processes. In: Genuys, F. (ed.) Programming Languages, pp. 43–112. NATO Advanced Study Institute, Academic Press, London (1968)Google Scholar
  15. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17, 643–644 (1974)MATHCrossRefGoogle Scholar
  16. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)MATHGoogle Scholar
  17. Doherty, S., Herlihy, M., Luchangco, V., Moir, M.: Bringing practical lock-free synchronization to 64-bit applications. In: Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing, pp. 31–39. ACM Press, New York, NY, USA (2004)Google Scholar
  18. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with open addressing. Distr. Comput. 17, 21–42 (2005)CrossRefGoogle Scholar
  19. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free parallel and concurrent garbage collection by mark &sweep. Sci. Comput. Program. 64, 341–374 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. Gao, H., Hesselink, W.H.: A general lock-free algorithm using compare-and-swap. Inf. Comput. 205, 225–241 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. Haldar, S., Vitanyi, P.: Bounded concurrent timestamp systems using vector clocks. J. ACM 49, 101–126 (2002)MathSciNetCrossRefGoogle Scholar
  22. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San Francisco (2008)Google Scholar
  23. Hesselink, W.H.: Wait-free linearization with a mechanical proof. Distr. Comput. 9, 21–36 (1995)CrossRefGoogle Scholar
  24. Hesselink, W.H.: A mechanical proof of Segall’s PIF algorithm. Formal Aspects Comput. 9, 208–226 (1997)MATHCrossRefGoogle Scholar
  25. Hesselink, W.H.: The verified incremental design of a distributed spanning tree algorithm: extended abstract. Formal Aspects Comput. 11, 45–55 (1999)MATHCrossRefGoogle Scholar
  26. Hesselink, W.H.: Using eternity variables to specify and prove a serializable database interface. Sci. Comput. Program. 51, 47–85 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. Hesselink, W.H.: Universal extensions to simulate specifications. Inf. Comput. 206, 108–128 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. Hesselink, W.H.: Revisiting mutual exclusion by Lycklama-Hadzilacos, PVS scripts. http://wimhesselink.nl/mechver/mx4bits (2010)
  29. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576–583 (1969)MATHCrossRefGoogle Scholar
  30. Holzmann, G.J.: The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley, Reading (2004)Google Scholar
  31. Inoue, T., Hironaka, T., Sasaki, T., Fukae, S., Koide, T., Mattausch, H.J.: Evaluation of bank-based multiport memory architecture with blocking network. Electron. Commun. Japan 89, 498–510 (2006)CrossRefGoogle Scholar
  32. Israeli, A., Li, M.: Bounded time-stamps. Distr. Comput. 6, 205–209 (1993)MATHCrossRefGoogle Scholar
  33. Jayanti, P., Petrovic, S.: Efficient and practical constructions of LL/SC variables. In: PODC ’03: Proceedings of the twenty-second annual symposium on Principles of Distributed Computing, pp. 285–294. ACM Press, New York, NY, USA (2003)Google Scholar
  34. Jayanti, P., Petrovic, S.: Efficient wait-free implementation of multiword LL/SC variables. In: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 59–68. IEEE (2005)Google Scholar
  35. Jayanti, P., Tan, K., Friedland, G., Katz, A.: Bounding Lamport’s Bakery algorithm. In: Proceedings of the SOFSEM, vol. 2234. LNCS, pp. 261–270 (2001)Google Scholar
  36. Kim, Y.J., Anderson, J.H.: Nonatomic mutual exclusion with local spinning. Distr. Comput. 19, 19–61 (2006)CrossRefGoogle Scholar
  37. Ladkin, P., Lamport, L., Olivier, B., Roegel, D.: Lazy caching in TLA. Distr. Comput. 12, 151–174 (1999)CrossRefGoogle Scholar
  38. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun. ACM 17, 453–455 (1974)MathSciNetMATHCrossRefGoogle Scholar
  39. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3 2, 125–143 (1977)MathSciNetCrossRefGoogle Scholar
  40. Lamport, L.: A new approach to proving the correctness of multiprocess programs. ACM Trans. Program. Lang. Syst. 1, 84–97 (1979)MATHCrossRefGoogle Scholar
  41. Lamport, L.: The mutual exclusion problem—part I: a theory of interprocess communication, part II: statement and solutions. J. ACM 33, 313–348 (1986)MathSciNetMATHCrossRefGoogle Scholar
  42. Lamport, L.: On interprocess communication. Parts I and II. Distr. Comput. 1, 77–101 (1986)MATHCrossRefGoogle Scholar
  43. Lamport, L.: Win and sin: predicate transformers for concurrency. ACM Trans. Program. Lang. Syst. 12, 396–428 (1990)CrossRefGoogle Scholar
  44. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16, 872–923 (1994)CrossRefGoogle Scholar
  45. Lamport, L.: Composition: a way to make proofs harder. In: de Roever, W.-P., Pnueli, H. (eds.) Compositionality: The Significant Difference, vol. 1536. LNCS, pp. 402–423. Springer, Berlin (1997)Google Scholar
  46. Lycklama, E.A., Hadzilacos, V.: A first-come-first-served mutual-exclusion algorithm with small communication variables. ACM Trans. Program. Lang. Syst. 13, 558–576 (1991)CrossRefGoogle Scholar
  47. Lynch, N.A.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)MATHGoogle Scholar
  48. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1992)CrossRefGoogle Scholar
  49. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer, New York (1995)CrossRefGoogle Scholar
  50. Michael, M.M.: Practical lock-free and wait-free LL/SC/VL implementations using 64-bit CAS. In: Guerraoui, R. (ed.) 18th International Symposium on Distributed Computing, vol. 3274. LNCS, pp. 144–158 (2004)Google Scholar
  51. Michael, M.M.: Scalable lock-free dynamic memory allocation. In: Proceedings of the 2004 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp. 35–46 (2004)Google Scholar
  52. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta Inf. 6, 319–340 (1976)MathSciNetMATHCrossRefGoogle Scholar
  53. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Version 2.4, System Guide, Prover Guide, PVS Language Reference. http://pvs.csl.sri.com (2001)
  54. Raynal, M.: Algorithms for Mutual Exclusion. MIT Press, Cambridge (1986)MATHGoogle Scholar
  55. Rusinoff, D.M.: A mechanically verified incremental garbage collector. Formal Aspects Comput. 6, 359–390 (1994)CrossRefGoogle Scholar
  56. Shiue, W.-T., Chakrabarti, C.: Multi-module multi-port memory design for low power embedded systems. Des. Autom. Embed. Syst. 9, 235–261 (2004)CrossRefGoogle Scholar
  57. Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 1438–1445. ACM Press (2004)Google Scholar
  58. Takamura, M., Igarashi, Y.: Simple mutual exclusion algorithms based on bounded tickets on the asynchronous shared memory model. In: Proceedings of the COCOON, vol. 2387. LNCS, pp. 259–268 (2002)Google Scholar
  59. Taubenfeld, G.: The black-white bakery algorithm and related bounded-space, adaptive, local-spinning and FIFO algorithms. In: Proceedings of the DISC, vol. 3274. LNCS, pp. 56–70 (2004)Google Scholar
  60. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pearson Education/Prentice Hall, London (2006)Google Scholar
  61. Tel, G.: Distributed Algorithms. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  62. Vijayaraghavan, S.: A variant of the bakery algorithm with bounded values as a solution to Abraham’s concurrent programming problem. In: Proceedings of the Design, Analysis and Simulation of Distributed Systems (2003)Google Scholar
  63. Welch, J., Lamport, L., Lynch, N.A.: A lattice-structured proof technique applied to a minimum-weight spanning tree algorithm. In: Proceedings 7th ACM Symposium on Principles of, Distributed Computing (1988)Google Scholar
  64. Woo, T.-K.: A note on Lamport’s mutual exclusion algorithm. SIGOPS Oper. Syst. Rev. 24(4), 78–81 (1990)CrossRefGoogle Scholar
  65. Zuo, W., Qi, Z., Jiaxing, L.: An intelligent multi-port memory. In: Proceedings of the IEEE International Symposium on Information Technology Application Workshops, pp. 251–254 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computing ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations