Acta Informatica

, Volume 50, Issue 2, pp 123–156 | Cite as

Infinitary rewriting: closure operators, equivalences and models

Original Article

Abstract

Infinitary Term Rewriting allows to express infinite terms and transfinite reductions that converge to those terms. Underpinning the machinery of infinitary rewriting are closure operators on relations that facilitate the formation of transfinite reductions and transfinite equivalence proofs. The literature on infinitary rewriting has largely neglected to single out such closure operators, leaving them implicit in definitions of (transfinite) rewrite reductions, or equivalence relations. This paper unpicks some of those definitions, extracting the underlying closure principles used, as well as constructing alternative operators that lead to alternative notions of reduction and equivalence. A consequence of this unpicking is an insight into the abstraction level at which these operators can be defined. Some of the material in this paper already appeared in Kahrs (2010). The paper also generalises the notion of equational model for infinitary rewriting. This leads to semantics-based notions of equivalence that tie in with the equivalences constructed from the closure operators.

References

  1. Arnold, A., Nivat, M.: Metric interpretations of infinite trees and semantics of nondeterministic recursive programs. Theor. Comput. Sci. 11(2), 181–205 (1980)MathSciNetMATHCrossRefGoogle Scholar
  2. Bahr, P.: Partial order infinitary term rewriting and Böhm Trees. In: Lynch, C. (ed.) Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Leibniz International Proceedings in Informatics (LIPIcs), vol. 6, pp. 67–84. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010) doi:10.4230/LIPIcs.RTA.2010.67. http://drops.dagstuhl.de/opus/volltexte/2010/2645
  3. Barendregt, H., Klop, J.W.: Applications of infinitary lambda calculus. Inf. Comput. 207(5), 559–582 (2009). doi:10.1016/j.ic.2008.09.003
  4. Barendregt, H.P.: The Lambda-Calculus, Its Syntax and Semantics. North-Holland, Amsterdam (1984)MATHGoogle Scholar
  5. Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114, 299–315 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  7. Dershowitz, N., Kaplan, S.: Rewrite, Rewrite, Rewrite, Rewrite, Rewrite, \(\ldots \). In: Principles of Programming Languages, pp. 250–259. ACM press (1989)Google Scholar
  8. Dershowitz, N., Kaplan, S., Plaisted, D.: Rewrite, Rewrite, Rewrite, \(\ldots \). Theor. Comput. Sci. 83(1), 71–96 (1991)Google Scholar
  9. Endrullis, J., Grabmayer, C., Hendriks, D., Klop, J.W., Vrijer, R.: Proving infinitary normalization. In: Types for Proofs and Programs: International Conference, TYPES 2008 Torino, Italy, March 26–29, 2008 Revised Selected Papers, pp. 64–82. Springer, Berlin (2009)Google Scholar
  10. Fox, R.: On topologies for function spaces. Bull. Am. Math. Soc. 51, 429–432 (1945)MATHCrossRefGoogle Scholar
  11. Gamelin, T.W., Greene, R.E.: Introduction to Topology. Dover Mineola, New York (1999)MATHGoogle Scholar
  12. Hahn, H.: Reelle Funktionen. Chelsea Publishing Company, New York (1948)Google Scholar
  13. Hajnal, A., Hamburger, P.: Set Theory. London Mathematical Society, London (1999)MATHCrossRefGoogle Scholar
  14. Isihara, A.: Algorithmic Term Rewriting Systems. Ph.D. thesis, Vrije Universiteit Amsterdam (2010)Google Scholar
  15. Jänich, K.: Topology. Springer, Berlin (1984)MATHCrossRefGoogle Scholar
  16. Kahrs, S.: Infinitary rewriting: Meta-theory and convergence. Acta Informatica 44(2), 91–121 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. Kahrs, S.: Modularity of convergence in infinitary rewriting. In: Treinen, R. (ed.) Rewriting Techniques and Applications, LNCS, vol. 5595, pp. 179–193. Springer, Berlin (2009)Google Scholar
  18. Kahrs, S.: Infinitary rewriting: Foundations revisited. In: Lynch, C. (ed.) Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Leibniz International Proceedings in Informatics (LIPIcs), vol. 6, pp. 161–176. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010). doi:10.4230/LIPIcs.RTA.2010.161. http://drops.dagstuhl.de/opus/volltexte/2010/2651
  19. Kahrs, S.: Modularity of convergence and strong convergence in infinitary rewriting. Log. Methods Comput Sci 6(3), 27 (2010)MathSciNetGoogle Scholar
  20. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Transfinite reductions in orthogonal term rewriting systems. Inf. Comput. 119(1), 18–38 (1995)MATHCrossRefGoogle Scholar
  21. Kennaway, R., van Oostrom, V., de Vries, F.J.: Meaningless terms in rewriting. J. Funct. Log. Program. 1, 1–35 (1999)Google Scholar
  22. Kennaway, R., de Vries, F.J.: Term Rewriting Systems, chap. Infinitary Rewriting. Cambridge University Press (2003)Google Scholar
  23. Ketema, J.: Böhm-Like Rrees for Rewriting. Ph.D. thesis, Vrije Universiteit Amsterdam (2006)Google Scholar
  24. Ketema, J.: Comparing Böhm-like trees. In: Treinen, R. (ed.) RTA, Lecture Notes in Computer Science, vol. 5595, pp. 239–254. Springer, Berlin (2009)Google Scholar
  25. Kuratowski, K.: Topology. Academic Press, New York (1966)Google Scholar
  26. Lüth, C.: Compositional term rewriting: An algebraic proof of Toyama’s Theorem. In: Rewriting Techniques and Applications, pp. 261–275 (1996). LNCS 1103Google Scholar
  27. MacLane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)Google Scholar
  28. Meinke, K., Tucker, J.: Universal algebra. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 1, pp. 189–411. Oxford University Press, Oxford (1992)Google Scholar
  29. Potter, M.D.: Sets: An Introduction. Oxford University Press, Oxford (1990)MATHGoogle Scholar
  30. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Springer, Berlin (2012)MATHCrossRefGoogle Scholar
  31. Simonsen, J.G.: Weak convergence and uniform normalization in infinitary rewriting. In: Lynch, C. (ed.) Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Leibniz International Proceedings in Informatics (LIPIcs), vol. 6, pp. 311–324. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010). doi:10.4230/LIPIcs.RTA.2010.311. http://drops.dagstuhl.de/opus/volltexte/2010/2660
  32. Smyth, M.: Topology. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 1, pp. 641–762. Oxford University Press, Oxford (1992)Google Scholar
  33. Steen, L.A., Seebach, J.A.: Counterexamples in Topology. Dover, New York (1995)MATHGoogle Scholar
  34. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, chap. 4, pp. 133–191. Elsevier, Amsterdam (1990)Google Scholar
  35. Urysohn, P.: Zum metrizations problem. Math. Ann. 94, 309–315 (1925)MathSciNetMATHCrossRefGoogle Scholar
  36. Zantema, H.: Normalisation of infinite terms. In: RTA 2008, LNCS, vol. 5117, pp. 441–455. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Kent at CanterburyCanterburyUK

Personalised recommendations