Acta Informatica

, Volume 50, Issue 1, pp 15–39 | Cite as

Step semantics of boolean nets

  • Jetty Kleijn
  • Maciej Koutny
  • Marta Pietkiewicz-Koutny
  • Grzegorz Rozenberg
Original Article

Abstract

Boolean nets are a family of Petri net models with very simple markings which are sets of places. We investigate several classes of boolean nets distinguished by different kinds of individual connections between places and transitions, as well as different ways in which these connections are combined in order to specify the effect of executing steps of transitions. The latter aspect can be captured by connection monoids. A key advantage of using connection monoids is that by describing the step semantics of a class of Petri nets in terms of a connection monoid, one can apply results developed within a general theory of Petri net synthesis. In this paper, we provide an extensive classification of boolean nets which can be described by connection monoids. This classification is based on the realisation that the different ways of interpreting combinations of connections can be made explicit using a higher level monoid. Moreover, we demonstrate that connection monoids can capture other behavioural properties of boolean nets, such as structural conflicts between transitions.

References

  1. Badouel, E.: Algorithms for Net Synthesis. Private communication (2011)Google Scholar
  2. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig and Rozenberg [16], pp. 529–586Google Scholar
  4. Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.P., König, B. (eds.) CONCUR. Lecture Notes in Computer Science, vol. 6901, pp. 312–326. Springer, Berlin (2011)Google Scholar
  5. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic Synthesis of Asynchronous Controllers and Interfaces. Springer, Berlin (2002)Google Scholar
  6. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of nets with step firing policies. Fundam. Inf. 94(3–4), 275–303 (2009)MathSciNetMATHGoogle Scholar
  7. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Part I: basic notions and the representation problem, part II: state spaces of concurrent systems. Acta Inf. 27(4), 315–368 (1989)MathSciNetCrossRefGoogle Scholar
  9. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inf. 75(1–4), 263–280 (2007)MathSciNetMATHGoogle Scholar
  10. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Classifying boolean nets for region-based synthesis. In: Applications of Region Theory. CEUR Workshop Proceedings, vol. 725, pp. 5–21 (2011)Google Scholar
  11. Kleijn, J., Koutny, M., Rozenberg, G.: Modelling reaction systems with Petri nets. In: International Workshop on Biological Processes& Petri Nets. CEUR Workshop Proceedings, vol. 724, pp. 36–52 (2011)Google Scholar
  12. Krause, C.: Integrated structure and semantics for Reo connectors and Petri nets. In: Bonchi, F., Grohmann, D., Spoletini, P., Tuosto, E. (eds.) ICE. EPTCS, vol. 12, pp. 57–69 (2009). doi:10.4204/EPTCS.12.4
  13. Langner, P., Schneider, C., Wehler, J.: Petri net based certification of event-driven process chains. In: Desel, J., Silva, M. (eds.) ICATPN. Lecture Notes in Computer Science, vol. 1420, pp. 286–305. Springer, Berlin (1998)Google Scholar
  14. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)MathSciNetMATHGoogle Scholar
  15. Pietkiewicz-Koutny, M.: The synthesis problem for elementary net systems with inhibitor arcs. Fundam. Inf. 40(2–3), 251–283 (1999)MathSciNetMATHGoogle Scholar
  16. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the Volumes Are Based on the Advanced Course on Petri Nets, Held in Dagstuhl, September 1996, Lecture Notes in Computer Science, vol. 1491. Springer, Berlin (1998)Google Scholar
  17. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig and Rozenberg [16], pp. 12–121Google Scholar
  18. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS. Lecture Notes in Computer Science, vol. 1046, pp. 517–528. Springer, Berlin (1996)Google Scholar
  19. Sobocinski, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR. Lecture Notes in Computer Science, vol. 6269, pp. 554–568. Springer, Berlin (2010)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jetty Kleijn
    • 1
  • Maciej Koutny
    • 2
  • Marta Pietkiewicz-Koutny
    • 2
  • Grzegorz Rozenberg
    • 1
    • 3
  1. 1.LIACSLeiden University LeidenThe Netherlands
  2. 2.School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK
  3. 3.Department of Computer ScienceUniversity of Colorado at Boulder430 UCB BoulderUSA

Personalised recommendations