Acta Informatica

, 48:165 | Cite as

MAT learners for tree series: an abstract data type and two realizations

  • Frank DrewesEmail author
  • Johanna Högberg
  • Andreas Maletti
Original Article


We propose abstract observation tables, an abstract data type for learning deterministic weighted tree automata in Angluin’s minimal adequate teacher (MAT) model, and show that every correct implementation of abstract observation tables yields a correct MAT learner. Besides the “classical” observation table, we show that abstract observation tables can also be implemented by observation trees. The advantage of the latter is that they often require fewer queries to the teacher.


Tree Series Tree Automaton Tree Transducer Abstract Data Type Dead State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angluin D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Angluin D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)Google Scholar
  3. 3.
    Angluin, D.: Queries revisited. In: Proceedings of 12th International Conference Algorithmic Learning Theory, volume 2225 of LNCS, pp. 12–31. Springer (2001)Google Scholar
  4. 4.
    Berstel J., Reutenauer C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18(2), 115–148 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Proceedings of 7th International Confernce Developments in Language Theory, volume 2710 of LNCS, pp. 146–158. Springer (2003)Google Scholar
  6. 6.
    Borchardt B.: A pumping lemma and decidability problems for recognizable tree series. Acta Cybernet. 16(4), 509–544 (2004)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Borchardt, B.: The theory of recognizable tree series. PhD thesis, Technische Universität Dresden (2005)Google Scholar
  8. 8.
    Cortes C., Mohri M., Rastogi A.: L p distance and equivalence of probabilistic automata. J. Comput. Syst. Sci. 18(4), 761–779 (2007)zbMATHMathSciNetGoogle Scholar
  9. 9.
    de la Higuera, C., Oncina, J.: Learning stochastic finite automata. In: Proceedings of 7th International Colloquium on Grammatical Inference, volume 3264 of LNCS, pp. 175–186. Springer (2004)Google Scholar
  10. 10.
    Drewes F.: MAT learners for recognizable tree languages and tree series. Acta Cybernet. 19(2), 249–274 (2009)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Drewes, F., Högberg, J.: Extensions of a MAT learner for regular tree languages. In: Proceedings of 23rd Annual Workshop of the Swedish Artificial Intelligence Society, pp. 35–44 (2006)Google Scholar
  12. 12.
    Drewes F., Högberg J.: Query learning of regular tree languages: how to avoid dead states. Theory Comput. Syst. 40(2), 163–185 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Drewes F., Vogler H.: Learning deterministically recognizable tree series. J. Automat. Lang. Combinat. 12(3), 332–354 (2007)MathSciNetGoogle Scholar
  14. 14.
    Fülöp Z., Vogler H.: Weighted tree automata and tree transducers. In: Kuich, W., Droste, M., Vogler, H. (eds) Handbook of Weighted Automata, chapter 9, pp. 313–403. Springer, Berlin (2009)CrossRefGoogle Scholar
  15. 15.
    Golan J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)zbMATHGoogle Scholar
  16. 16.
    Gold E.M.: Language identification in the limit. Inf. Cont. 10(5), 447–474 (1967)CrossRefzbMATHGoogle Scholar
  17. 17.
    Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Proceedings of 8th International Colloquium on Grammatical Inference, volume 4201 of LNCS, pp. 268–280. Springer (2006)Google Scholar
  18. 18.
    Kearns M.J., Vazirani U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)Google Scholar
  19. 19.
    Maletti, A.: Learning deterministically recognizable tree series—revisited. In: Proceedings of 2nd International Conference on Algebraic Informatics, volume 4728 of LNCS, pp. 218–235. Springer (2007)Google Scholar
  20. 20.
    Oncina, J.: Using multiplicity automata to identify transducer relations from membership and equivalence queries. In: Proceedings of 9th International Colloquium on Grammatical Inference, volume 5278 of LNCS, pp. 154–162. Springer (2008)Google Scholar
  21. 21.
    Sakakibara Y.: Learning context-free grammars from structural data in polynomial time. Theoret. Comput. Sci. 76(2–3), 223–242 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Shapiro E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT Press, Cambridge (1983)Google Scholar
  23. 23.
    Valiant L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Frank Drewes
    • 1
    Email author
  • Johanna Högberg
    • 1
  • Andreas Maletti
    • 2
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations