Acta Informatica

, Volume 48, Issue 1, pp 25–41 | Cite as

Avoidable binary patterns in partial words

  • F. Blanchet-Sadri
  • Robert Mercaş
  • Sean Simmons
  • Eric Weissenstein
Original Article

Abstract

The problem of classifying all the avoidable binary patterns in (full) words has been completely solved (see Chap. 3 of M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002). In this paper, we classify all the avoidable binary patterns in partial words, or sequences that may have some undefined positions called holes. In particular we show that, if we do not substitute any variable of the pattern by a partial word consisting of only one hole, the avoidability index of the pattern remains the same as in the full word case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bean D.R., Ehrenfeucht A., McNulty G.: Avoidable patterns in strings of symbols. Pac. J. Math. 85, 261–294 (1979)MATHMathSciNetGoogle Scholar
  2. 2.
    Blanchet-Sadri F.: Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton (2008)MATHGoogle Scholar
  3. 3.
    Blanchet-Sadri F., Mercaş R., Scott G.: A generalization of Thue freeness for partial words. Theor. Comput. Sci. 410(8–10), 793–800 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Blanchet-Sadri, F., Mercaş, R., Simmons, S., Weissenstein, E.: Avoidable binary patterns in partial words. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010, 4th International Conference on Language and Automata Theory and Applications, Trier, Germany, Lecture Notes in Computer Science, vol. 6031, pp. 106–117. Springer, Berlin (2010)Google Scholar
  5. 5.
    Cassaigne J.: Unavoidable binary patterns. Acta Informatica 30, 385–395 (1993)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Halava V., Harju T., Kärki T., Séébold P.: Overlap-freeness in infinite partial words. Theor. Comput. Sci. {\bf 410acute;(8–10), 943–948 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Lothaire M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Lothaire M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  9. 9.
    Manea F., Mercaş R.: Freeness of partial words. Theor. Comput. Sci. 389(1–2), 265–277 (2007)MATHGoogle Scholar
  10. 10.
    Roth P.: Every binary pattern of length six is avoidable on the two-letter alphabet. Acta Informatica 29, 95–106 (1992)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Schmidt, U.: Motifs inévitables dans les mots. Technical Report LITP 86–63 Thèse Paris VI (1986)Google Scholar
  12. 12.
    Schmidt U.: Avoidable patterns on two letters. Theor. Comput. Sci. 63, 1–17 (1989)CrossRefMATHGoogle Scholar
  13. 13.
    Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana, 7, 1–22 (1906) (Reprinted in Selected Mathematical Papers of Axel, T., Nagell, T. (eds.) pp. 139–158. Universitetsforlaget, Oslo, Norway (1977))Google Scholar
  14. 14.
    Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana, 1, 1–67 (1912) (Reprinted in Selected Mathematical Papers of Axel, T., Nagell, T. (eds) pp. 413–478. Universitetsforlaget, Oslo, Norway (1977))Google Scholar
  15. 15.
    Zimin A.I.: Blocking sets of terms. Mathematics of the USSR-Sbornik 47(2), 353–364 (1984)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • F. Blanchet-Sadri
    • 1
  • Robert Mercaş
    • 2
  • Sean Simmons
    • 3
  • Eric Weissenstein
    • 4
  1. 1.Department of Computer ScienceUniversity of North CarolinaGreensboroUSA
  2. 2.GRLMC, Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Department of MathematicsThe University of Texas at AustinAustinUSA
  4. 4.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations