Acta Informatica

, Volume 48, Issue 1, pp 19–24

A characterization of rational D0L power series

Original Article


We study D0L power series over an arbitrary field. We characterize those D0L power series which are also rational series. As a consequence we show that rationality is decidable for D0L power series over many fields.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berstel J., Reutenauer C.: Rational Series and Their Languages. Springer, Berlin (1988)MATHGoogle Scholar
  2. 2.
    Droste, M., Kuich, W., Vogler, H. (eds): Handbook of Weighted Automata. Springer, Berlin (2009)MATHGoogle Scholar
  3. 3.
    Honkala J.: On the decidability of some equivalence problems for L algebraic series. Int. J. Algebra Comput. 7, 339–351 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Honkala J.: On algebraicness of D0L power series. J. UCS 5, 11–19 (1999)MathSciNetGoogle Scholar
  5. 5.
    Honkala J.: On sequences defined by D0L power series. Theor. Inform. Appl. 33, 125–132 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Honkala J.: On D0L power series. Theor. Comput. Sci. 244, 117–134 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Honkala J.: On images of D0L and DT0L power series. Theor. Comput. Sci. 290, 1869–1882 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Honkala J. : On D0L power series over various semirings. In: Martin-Vide, C., Mitrana, V. (eds) Grammars and Automata for String Processing: From Mathematics and Computer Science to Biology, and Back, pp. 263–273. Taylor and Francis, UK (2003)CrossRefGoogle Scholar
  9. 9.
    Honkala J., Kuich W.: On Lindenmayerian algebraic power series. Theor. Comput. Sci. 183, 113–142 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jacob G.: Un théorème de factorisation des produits d’endomorphismes de K n. J. Algebra 63, 389–412 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lothaire M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Reutenauer C.: An Ogden-like iteration lemma for rational power series. Acta Inform. 13, 189–197 (1980)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rozenberg G., Salomaa A.: The Mathematical Theory of L Systems. Academic Press, New York (1980)MATHGoogle Scholar
  14. 14.
    Rozenberg, G., Salomaa, A. (eds): Handbook of Formal Languages, vol. 1–3. Springer, Berlin (1997)MATHGoogle Scholar
  15. 15.
    Salomaa, A.: Comparative decision problems between sequential and parallel rewriting. In: Proceedings Symposium Uniformly Structured Automata and Logic, pp. 62–66 (1975)Google Scholar
  16. 16.
    Salomaa A., Soittola M.: Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin (1978)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations