Advertisement

Acta Informatica

, Volume 47, Issue 7–8, pp 359–374 | Cite as

A theoretical comparison of LRU and LRU-K

  • Joan Boyar
  • Martin R. Ehmsen
  • Jens S. Kohrt
  • Kim S. Larsen
Original Article

Abstract

The paging algorithm Least Recently Used Second Last Request (LRU-2) was proposed for use in database disk buffering and shown experimentally to perform better than Least Recently Used (LRU). We compare LRU-2 and LRU theoretically, using both the standard competitive analysis and the newer relative worst order analysis. The competitive ratio for LRU-2 is shown to be 2k for cache size k, which is worse than LRU’s competitive ratio of k. However, using relative worst order analysis, we show that LRU-2 and LRU are comparable in LRU-2’s favor, giving a theoretical justification for the experimental results. Many of our results for LRU-2 also apply to its generalization, Least Recently Used Kth Last Request.

Keywords

Competitive Ratio Online Algorithm Competitive Analysis Page Fault Theoretical Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers S.: Online algorithms: a survey. Math. Programm. 97(1–2), 3–26 (2003)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Borodin A., El-Yaniv R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Borodin A., Irani S., Raghavan P., Schieber B.: Competitive paging with locality of reference. J. Comput. Syst. Sci. 50(2), 244–258 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boyar, J., Ehmsen, M.R., Larsen, K.S.: Theoretical evidence for the superiority of LRU-2 over LRU for the paging problem. In: Proceedings of the 4th International Workshop on Approximation and Online Algorithms, vol. 4368 of Lecture Notes in Computer Science, pp. 95–107. Springer (2006)Google Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Trans. Algorithms, 3(2), (2007)Google Scholar
  6. 6.
    Boyar J., Favrholdt L.M., Larsen K.S.: The relative worst order ratio applied to paging. J. Comput. Syst. Sci. 73(5), 818–843 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation. ACM Trans. Algorithms 4(4), (2008)Google Scholar
  8. 8.
    Dorrigiv, R., Ehmsen, M.R., López-Ortiz, A.: Parameterized analysis of paging and list update algorithms. In: Proceedings of the 7th International Workshop on Approximation and Online Algorithms, vol. 5893 of Lecture Notes in Computer Science. Springer, 2010. Accepted for publicationGoogle Scholar
  9. 9.
    Dorrigiv R., López-Ortiz A.: A survey of performance measures for on-line algorithms. SIGACT News 36(3), 67–81 (2005)CrossRefGoogle Scholar
  10. 10.
    Dorrigiv R., López-Ortiz A., Munro J.I.: On the relative dominance of paging algorithms. Theor. Comput. Sci. 410, 3694–3701 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Comparing online algorithms for bin packing problems. J. Sched. Accepted for publicationGoogle Scholar
  12. 12.
    Epstein L., Favrholdt L.M., Kohrt J.S.: Separating scheduling algorithms with the relative worst order ratio. J. Comb. Optim. 12(4), 362–385 (2006)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fiat, A., Rosen, Z.: Experimental studies of access graph based heuristics: beating the LRU standard? In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 63–72 (1997)Google Scholar
  14. 14.
    Johnson, T., Shasha, D.: 2q: A low overhead high performance buffer management replacement algorithm. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 439–450. Morgan Kaufmann Publishers Inc. (1994)Google Scholar
  15. 15.
    Karlin A.R., Manasse M.S., Rudolph L., Sleator D.D.: Competitive snoopy caching. Algorithmica 3(1), 79–119 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Krumke S.O., De Paepe W., Rambau J., Stougie L.: Bincoloring. Theor. Comput. Sci. 407(1–3), 231–241 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Megiddo, N., Modha, D.S.: Arc: a self-tuning, low overhead replacement cache. In: Proceedings of the 2nd USENIX Conference on File and Storage Technologies, pp. 115–130. USENIX, (2003)Google Scholar
  18. 18.
    O’Neil, E.J., O’Neil, P.E., Weikum, G.: The LRU-K page replacement algorithm for database disk buffering. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 297–306 (1993)Google Scholar
  19. 19.
    O’Neil E.J., O’Neil P.E., Weikum G.: An optimality proof of the LRU-K page replacement algorithm. J. ACM 46(1), 92–112 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sleator D.D., Tarjan R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Weikum G., Hasse C., Mönkeberg A., Zabback P.: The comfort automatic tuning project. Inf. Syst. 19(5), 381–432 (1994)CrossRefGoogle Scholar
  22. 22.
    Young N.: The k-server dual and loose competitiveness for paging. Algorithmica 11(6), 525–541 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Joan Boyar
    • 1
  • Martin R. Ehmsen
    • 1
  • Jens S. Kohrt
    • 1
  • Kim S. Larsen
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations