Acta Informatica

, Volume 47, Issue 3, pp 147–177 | Cite as

Lifting non-finite axiomatizability results to extensions of process algebras

  • Luca Aceto
  • Wan Fokkink
  • Anna Ingolfsdottir
  • MohammadReza MousaviEmail author
Original Article


This paper presents a general technique for obtaining new results pertaining to the non-finite axiomatizability of behavioural (pre)congruences over process algebras from old ones. The proposed technique is based on a variation on the classic idea of reduction mappings. In this setting, such reductions are translations between languages that preserve sound (in)equations and (in)equational provability over the source language, and reflect families of (in)equations responsible for the non-finite axiomatizability of the target language. The proposed technique is applied to obtain a number of new non-finite axiomatizability theorems in process algebra via reduction to Moller’s celebrated non-finite axiomatizability result for CCS. The limitations of the reduction technique are also studied. In particular, it is shown that prebisimilarity is not finitely based over CCS with the divergent process Ω, but that this result cannot be proved by a reduction to the non-finite axiomatizability of CCS modulo bisimilarity. This negative result is the inspiration for the development of a sharpened reduction method that is powerful enough to show that prebisimilarity is not finitely based over CCS with the divergent process Ω.


Target Language Operational Semantic Axiom System Process Algebra Source Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky S.: A domain equation for bisimulation. Inf. Comput. 92(1), 161–218 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aceto, L., Chen, T., Fokkink, W., Ingolfsdottir, A.: On the axiomatizability of priority. In: Proceedings of Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10–14, 2006, Part II, LNCS, vol. 4052, pp. 480–491. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Aceto, L., Fokkink, W., Ingolfsdottir, A.: Ready to preorder: get your BCCSP axiomatization for free! In: Proceedings of CALCO’07, LNCS, vol. 4624, pp. 338–367. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Aceto L., Fokkink W., Ingolfsdottir A., Luttik B.: CCS with Hennessy’s merge has no finite equational axiomatization. Theor. Comput. Sci. 330(3), 377–405 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de~Vrijer, R.C. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Aceto L., Fokkink W., Ingolfsdottir A., Nain S.: Bisimilarity is not finitely based over BPA with interrupt. Theor. Comput. Sci. 366(1–2), 60–81 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Aceto L., Hennessy M.: Termination, deadlock, and divergence. J. ACM 39(1), 147–187 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Aceto L., Ingolfsdottir A.: CPO models for compact GSOS languages. Inf. Comput. 129(1), 107–141 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Aceto, L., Ingolfsdottir, A., Mousavi, M.R.: Impossibility results for the equational theory of timed CCS. In: Proceedings of CALCO’07, LNCS, vol. 4624, pp. 80–95. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Handbook of Process Algebra, pp. 197–292. North-Holland, Amsterdam (2001)Google Scholar
  11. 11.
    Aceto L., Fokkink W., Verhoef C.: Conservative extension in structural operational semantics. In: Paun, G., Rozenberg, G., Salomaa, A. (eds) Current Trends in Theoretical Computer Science—Entering the 21st Century, pp. 504–524. World Scientific, Singapore (2001)Google Scholar
  12. 12.
    Baeten J.C.M., Weijland W.P.: Process Algebra. Cambridge University Press, Cambridge (1990)Google Scholar
  13. 13.
    Bergstra J.A., Klop J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3), 109–137 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Blom, S.C.C., Fokkink, W., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.C.: mCRL: A toolset for analysing algebraic specifications. In: Proceedings of CAV’01, LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Bloom, S.L., Ésik, Z.: Nonfinite axiomatizability of shuffle inequalities. In: Proceedings of TAPSOFT’95, LNCS, vol. 915, pp. 318–333. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Chen, T.: Clocks, Dice and Processes. Ph.D. Thesis, Vrije Universiteit Amsterdam (2009)Google Scholar
  17. 17.
    Chen T., Fokkink W., van Glabbeek R.: Ready to preorder: the case of weak process semantics. Inf. Process. Lett. 109(2), 104–111 (2009)CrossRefGoogle Scholar
  18. 18.
    de Frutos Escrig, D., Rodriguez, C.G., Palomino, M.: Ready to preorder: an algebraic and general proof. J. Log. Algebraic Program. (to appear)Google Scholar
  19. 19.
    Esik Z., Bertol M.: Nonfinite axiomatizability of the equational theory of shuffle. Acta. Informatica. 35(6), 505–539 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Fokkink W., Verhoef C.: A conservative look at operational semantics with variable binding. Inf. Comput. 146(1), 24–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The formal specification language mCRL2. In: Proceedings of the Dagstuhl Seminar, 2007. Available from
  22. 22.
    Gunter C.: Semantics of Programming Languages: Structures and Techniques. Foundations of Computing Series. MIT Press, Cambridge (1992)Google Scholar
  23. 23.
    Hennessy M.: A term model for synchronous processes. Inf. Control 51(1), 58–75 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Hennessy M.: Algebraic Theory of Processes. Foundations of Computing Series. MIT Press, Cambridge (1998)Google Scholar
  25. 25.
    Hermanns H.: Interactive Markov Chains and the Quest for Quantified Quality. LNCS, vol. 2428. Springer, Berlin (2002)CrossRefGoogle Scholar
  26. 26.
    Hoare C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  27. 27.
    Lüttgen G., Vogler W.: Bisimulation on speed: worst-case efficiency. Inf. Comput. 191(2), 105–144 (2004)zbMATHCrossRefGoogle Scholar
  28. 28.
    Lüttgen, G., Vogler, W.: Bisimulation on speed: lower time bounds. In: Proceedings of FOSSACS’04, LNCS, vol. 2987. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Lüttgen G., Vogler W.: Bisimulation on speed: a unified approach. Theor. Comput. Sci. 360(1–3), 209–227 (2006)zbMATHCrossRefGoogle Scholar
  30. 30.
    Milner, R.: A modal characterisation of observable machine. In: Proceedings of CAAP’81, LNCS, vol.~112, pp. 25–34. Springer, Heidelberg (1981)Google Scholar
  31. 31.
    Milner R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  32. 32.
    Moller, F.: Axioms for Concurrency. Ph.D. Thesis, University of Edinburgh (1989)Google Scholar
  33. 33.
    Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In: Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 142–153. IEEE Comput. Soc. (1990)Google Scholar
  34. 34.
    Moller, F.: The importance of the left merge operator in process algebras. In: Proceedings of ICALP’90, LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990)Google Scholar
  35. 35.
    Moller, F., Tofts, C.M.N.: A temporal calculus of communicating systems. In: Proceedings of CONCUR’90, LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990)Google Scholar
  36. 36.
    Moller, F., Tofts, C.: Relating processes with respect to speed. In: Proceedings of CONCUR ’91, LNCS, vol. 527, pp. 424–438. Springer, Heidelberg (1991)Google Scholar
  37. 37.
    Mousavi, M.R., Reniers, M.A.: Orthogonal extensions in structural operational semantics. In: Proceedings of ICALP’05, LNCS, vol. 3580, pp. 1214–1225, Springer, Heidelberg (2005)Google Scholar
  38. 38.
    Nicollin X., Sifakis J.: The algebra of timed processes, ATP: theory and application. Inf. Comput. 114(1), 131–178 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Plotkin G.D.: A structural approach to operational semantics. J. Log. Algebraic Program. 60–61, 17–139 (2004)MathSciNetGoogle Scholar
  40. 40.
    Sipser M.: Introduction to the Theory of Computation. 2nd edn. PWS Publishing, Boston (2005)Google Scholar
  41. 41.
    Yi, W.: Real-time behaviour of asynchronous agents. In: Proceedings of CONCUR’90, LNCS, vol. 458, pp. 502–520. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luca Aceto
    • 1
  • Wan Fokkink
    • 2
  • Anna Ingolfsdottir
    • 1
  • MohammadReza Mousavi
    • 3
    Email author
  1. 1.School of Computer ScienceReykjavík UniversityReykjavíkIceland
  2. 2.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations