Advertisement

Acta Informatica

, Volume 47, Issue 2, pp 133–146 | Cite as

Small universal accepting hybrid networks of evolutionary processors

  • Remco Loos
  • Florin Manea
  • Victor Mitrana
Original Article

Abstract

In this paper, we improve some results regarding the size complexity of accepting hybrid networks of evolutionary processors (AHNEPs). We show that there are universal AHNEPs of size 6, by devising a method for simulating 2-tag systems. This result improves the best upper bound for the size of universal AHNEPs which was 7. We also propose a computationally and descriptionally efficient simulation of nondeterministic Turing machines with AHNEPs. More precisely, we prove that AHNEPs with ten nodes can simulate any nondeterministic Turing machine of time complexity f (n) in time O(f (n)). This result significantly improves the best known upper bound for the number of nodes in a network simulating in linear time an arbitrary Turing machine, namely 24.

Keywords

Turing Machine Input String Hybrid Network Communication Step Input Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov A., Csuhaj-Varju E., Martin-Vide C., Rogozhin Y.: About universal hybrid networks of evolutionary processors of small size. Lect. Notes Comput. Sci. 5196, 28–39 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alhazov A., Csuhaj-Varju E., Martin-Vide C., Rogozhin Y.: On the size of computationally complete hybrid networks of evolutionary processors. Theor. Comput. Sci. 410(35), 3188–3197 (2009)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hartmanis J., Stearns R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 533–546 (1965)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Hillis W.D.: The Connection Machine. MIT, Cambridge (1985)Google Scholar
  5. 5.
    Manea F., Martin-Vide C., Mitrana V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Math. Struct. Comput. Sci. 17(4), 753–771 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Manea F., Mitrana V.: All NP-problems can be solved in polynomial time by accepting hybrid networks of evolutionary processors of constant size. Inf. Proc. Lett. 103(3), 112–118 (2007)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Margenstern M., Mitrana V., Perez-Jimenez M.: Accepting hybrid networks of evolutionary systems. Lect. Notes Comput. Sci. 3384, 235–246 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Minsky, M.L.: Size and structure of universal turing machines using tag systems. Recursive Function Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238 (1962)Google Scholar
  9. 9.
    Papadimitriou C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  10. 10.
    Post E.L.: Formal reductions of the general combinatorial decision problem. Am. J. Math. 65, 197–215 (1943)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rogozhin Y.: Small universal turing machines. Theor. Comput. Sci. 168, 215–240 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A. (eds): Handbook of Formal Languages, vol. I–III. Springer, Berlin (1997)Google Scholar
  13. 13.
    Sankoff D. et al.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)CrossRefGoogle Scholar
  14. 14.
    Woods, D., Neary, T.:On the time complexity of 2-tag systems and small universal Turing machines. 47th Annual IEEE symposium on foundations of computer science FOCS ’06, pp. 439–448 (2006)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.EMBL, European Bioinformatics InstituteHinxton, CambridgeUK
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  3. 3.Faculty of Computer ScienceOtto-von-Guericke University of MagdeburgMagdeburgGermany
  4. 4.Department of Information Systems and ComputationTechnical University of ValenciaValenciaSpain

Personalised recommendations