Acta Informatica

, 46:561 | Cite as

Extended multi bottom–up tree transducers

Composition and decomposition
  • Joost Engelfriet
  • Eric Lilin
  • Andreas MalettiEmail author
Original Article


Extended multi bottom–up tree transducers are defined and investigated. They are an extension of multi bottom–up tree transducers by arbitrary, not just shallow, left-hand sides of rules; this includes rules that do not consume input. It is shown that such transducers, even linear ones, can compute all transformations that are computed by linear extended top–down tree transducers, which are a theoretical model for syntax-based machine translation. Moreover, the classical composition results for bottom–up tree transducers are generalized to extended multi bottom–up tree transducers. Finally, characterizations in terms of extended top–down tree transducers and tree bimorphisms are presented.


Machine Translation Input Symbol Derivation Step Computational Linguistics Input Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aho A.V., Ullman J.D.: Syntax directed translations and the pushdown assembler. J. Comput. Syst. Sci. 3(1), 37–56 (1969)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A General and Efficient Weighted Finite-state Transducer Library. In: CIAA, Lecture Notes in Computer Science, vol. 4783, pp. 11–23. Springer, Berlin (2007)Google Scholar
  3. 3.
    Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle M. Dauchet, Université de Lille (1975)Google Scholar
  4. 4.
    Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86. Edinburgh University Press, Edinburgh (1976)Google Scholar
  5. 5.
    Arnold A., Dauchet M.: Morphismes et bimorphismes d’arbres. Theor. Comput. Sci. 20(1), 33–93 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Baker B.S.: Composition of top-down and bottom-up tree transductions. Inf. Control 41(2), 186–213 (1979)zbMATHCrossRefGoogle Scholar
  7. 7.
    Berstel J.: Transductions and Context-free Languages. Teubner, Stuttgart (1979)zbMATHGoogle Scholar
  8. 8.
    Bloem R., Engelfriet J.: A comparison of tree transductions defined by monadic second-order logic and by attribute grammars. J. Comput. Syst. Sci. 61(1), 1–50 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Courcelle B., Franchi-Zannettacci P.: Attribute grammars and recursive program schemes. Theor. Comput. Sci. 17, 163–191, 235–257 (1982)CrossRefMathSciNetGoogle Scholar
  10. 10.
    DeNeefe, S., Knight, K., Wang, W., Marcu, D.: What can syntax-based MT learn from phrase-based MT? In: EMNLP & CoNLL, pp. 755–763. The Association for Computational Linguistics, Stroudsburg (2007)Google Scholar
  11. 11.
    Engelfriet J.: Bottom-up and top-down tree transformations: a comparison. Math. Syst. Theory 9(3), 198–231 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Engelfriet J.: Top-down tree transducers with regular look-ahead. Math. Syst. Theory 10(1), 289–303 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Engelfriet, J.: Tree transducers and syntax-directed semantics. Technical Report Memorandum 363, Technische Hogeschool Twente, 1981. In: Proceedings of 7th CAAP, pp. 82–107 (1982)Google Scholar
  14. 14.
    Engelfriet J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages, vol. 3, chap. 3, pp. 125–213. Springer, Berlin (1997)Google Scholar
  15. 15.
    Engelfriet, J., Lilin, E., Maletti, A.: Extended multi bottom-up tree transducers. In: DLT, Lecture Notes in Computer Science, vol. 5257, pp. 289–300. Springer, Berlin (2008)Google Scholar
  16. 16.
    Engelfriet J., Maneth S.: Macro tree transducers, attribute grammars, and MSO definable tree translations. Inf. Comput. 154(1), 34–91 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Engelfriet J., Rozenberg G., Slutzki G.: Tree transducers, L systems, and two-way machines. J. Comput. Syst. Sci. 20(2), 150–202 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fülöp Z.: On attributed tree transducers. Acta Cybern. 5, 261–279 (1981)zbMATHGoogle Scholar
  19. 19.
    Fülöp Z., Kühnemann A., Vogler H.: A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2), 57–67 (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Fülöp Z., Kühnemann A., Vogler H.: Linear deterministic multi bottom-up tree transducers. Theor. Comput. Sci. 347(1–2), 276–287 (2005)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ganzinger H.: Increasing modularity and language-independency in automatically generated compilers. Sci. Comput. Prog. 3(3), 223–278 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gécseg F., Steinby M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)zbMATHGoogle Scholar
  23. 23.
    Gécseg F., Steinby M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages, vol. 3, chap. 1., pp. 1–68. Springer, Berlin (1997)Google Scholar
  24. 24.
    Giegerich R.: Composition and evaluation of attribute coupled grammars. Acta Inf. 25(4), 355–423 (1988)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Graehl, J.: Carmel. ISI/USC. (1997)
  26. 26.
    Graehl, J., Knight, K.: Training tree transducers. In: HLT-NAACL, pp. 105–112. The Association for Computational Linguistics, Stroudsburg (2004) (see also [27])Google Scholar
  27. 27.
    Graehl J., Knight K., May J.: Training tree transducers. Comput. Linguist. 34(3), 391–427 (2008)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Hopcroft J.E., Ullman J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  29. 29.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: CICLing, Lecture Notes in Computer Science, vol. 3406, pp 1–24. Springer, Berlin (2005)Google Scholar
  30. 30.
    Kühnemann, A.: Berechnungsstärken von Teilklassen primitiv-rekursiver Programmschemata. PhD thesis, Technische Universität Dresden (1997)Google Scholar
  31. 31.
    Kühnemann, A.: Benefits of tree transducers for optimizing functional programs. In: FSTTCS. Lecture Notes in Computer Science, vol. 1530, pp. 146–157. Springer, Berlin (1998)Google Scholar
  32. 32.
    Lilin, E.: Une généralisation des transducteurs d’états finis d’arbres: les S-transducteurs. Thèse 3ème cycle, Université de Lille (1978)Google Scholar
  33. 33.
    Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déterministes. In: CAAP, Lecture Notes in Computer Science, vol. 112, pp. 280–289. Springer, Berlin (1981)Google Scholar
  34. 34.
    Maletti A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9–10), 1187–1196 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Maletti A., Graehl J., Hopkins M., Knight K.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Rambow O., Satta G.: Independent parallelism in finite copying parallel rewriting systems. Theor. Comput. Sci. 223(1–2), 87–120 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Raoult J.C.: Rational tree relations. Bull. Belg. Math. Soc. 4, 149–176 (1997)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Rounds W.C.: Mappings and grammars on trees. Math. Syst. Theory 4(3), 257–287 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Seki H., Matsumura T., Fujii M., Kasami T.: On multiple context-free grammars. Theor. Comput. Sci. 88(2), 191–229 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Shabes, Y.: Mathematical and computational aspects of lexicalized grammars. Ph.D. thesis, University of Pennsylvania (1990)Google Scholar
  41. 41.
    Shieber, S.M.: Unifying synchronous tree adjoining grammars and tree transducers via bimorphisms. In: EACL, pp. 377–384. The Association for Computational Linguistics, Stroudsburg (2006)Google Scholar
  42. 42.
    Shieber, S.M., Shabes, Y.: Synchronous tree-adjoining grammars. In: COLING, pp. 1–6. The Association for Computational Linguistics, Stroudsburg (1990)Google Scholar
  43. 43.
    Steinby, M., Tîrnăucă, C.I.: Syntax-directed translations and quasi-alphabetic tree bimorphisms. In: CIAA, Lecture Notes in Computer Science, vol. 4783, pp. 265–276. Springer, Berlin (2007)Google Scholar
  44. 44.
    Thatcher J.W.: Generalized2 sequential machine maps. J. Comput. Syst. Sci. 4(4), 339–367 (1970)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Thatcher J.W.: Tree automata: An informal survey. In: Aho, A.V. (eds) Currents in the Theory of Computing, pp. 143–172. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  46. 46.
    Weir, D.J.: Linear context-free rewriting systems and deterministic tree-walking transducers. In: ACL, pp. 136–143. The Association for Computational Linguistics, Stroudsburg (1992)Google Scholar
  47. 47.
    Yamada, K., Knight, K.: A decoder for syntax-based statistical MT. In: ACL, pp. 303–310. The Association for Computational Linguistics, Stroudsburg (2002)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Eric Lilin
    • 2
  • Andreas Maletti
    • 3
    • 4
    Email author
  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands
  2. 2.Université des Sciences et Technologies de Lille, UFR IEEAVilleneuve d’AscqFrance
  3. 3.International Computer Science InstituteBerkeleyUSA
  4. 4.Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations