Advertisement

Acta Informatica

, Volume 46, Issue 4, pp 285–295 | Cite as

The maximum gain of increasing the number of preemptions in multiprocessor scheduling

  • Kamilla Klonowska
  • Lars LundbergEmail author
  • Håkan Lennerstad
Original Article

Abstract

We consider the optimal makespan C(P, m, i) of an arbitrary set P of independent jobs scheduled with i preemptions on a multiprocessor with m identical processors. We compare the ratio for such makespans for i and j preemptions, respectively, where i < j. This ratio depends on P, but we are interested in the P that maximizes this ratio, i.e. we calculate a formula for the worst case ratio G(m, i, j) defined as \({G(m,i,j)=\max \frac{C(P,m,i)}{C(P,m,j)},}\) where the maximum is taken over all sets P of independent jobs.

Keywords

Completion Time Optimal Schedule Parallel Program Maximum Gain Overhead Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braun O., Schmidt G.: Parallel processor scheduling with limited number of preemptions. SIAM J. Comput. 32(3), 671–680 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Coffman E.G., Garey M.R.: Proof of the 4/3 conjecture for preemptive vs. nonpreemptive two-processor scheduling. J. ACM 40(5), 991–1018 (1993) ISSN:0004-5411zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Graham R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Graham, R.L., Knuth, D., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1994). ISBN 0-201-14236-8Google Scholar
  5. 5.
    Lennerstad, H., Lundberg, L.: Optimal Scheduling Combinatorics. Electronic Notes in Discrete Mathematics, vol. 14. Elsevier, Amsterdam (2003)Google Scholar
  6. 6.
    Lennerstad, H., Lundberg, L.: Generalizations of the floor an ceiling functions by the Stern–Brocot tree, Technical report, Blekinge Institute of Technology (2006)Google Scholar
  7. 7.
    Liu, C.L.: Optimal scheduling on multiprocessor computing systems. In: Proceedings of the 13th Annual Symposium on Switching and Automata Theory, pp. 155–160. IEEE Computer Society, Los Alamitos (1972)Google Scholar
  8. 8.
    McNaughton R.: Scheduling with deadlines and loss functions. Manag. Sci. 6, 1–12 (1959)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kamilla Klonowska
    • 1
  • Lars Lundberg
    • 1
    Email author
  • Håkan Lennerstad
    • 1
  1. 1.School of Engineering, Blekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations