Acta Informatica

, Volume 46, Issue 1, pp 43–55 | Cite as

Exploiting colored Petri nets to decide on permutation admissibility

Original Article

Abstract

In this work, we propose an innovative approach to investigate the admissibility of permutations to multistage interconnection networks—a challenging problem of switching theory. The proposed approach is centered upon modeling of multistage interconnection networks with colored Petri nets and use of Petri net analysis tools such as the unfolding technique and the invariants method. To assess the feasibility of the proposed approach we demonstrate that the complete unfoldings obtained in this work are polynomial in the problem size and employ an acyclic structure. The approach takes advantage of easy to use, yet extremely efficient, software tools.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bashirov, R.: Rearrangeability of 2 log−1 stage networks employing an uniform connection pattern. Calcolo 38, 85–95 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bashirov, R., Crespi, V.: Analyzing the permutation capability of multistage interconnection networks with colored Petri nets. Inform. Sci. 176, 3143–3165 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7—graphical editor and analyzer for timed and stochastic Petri nets. Perform. Eval. 24, 47–68 (1995)MATHCrossRefGoogle Scholar
  4. 4.
    Das, R.K., Das, N.: GSE—a generalized full-access multistage interconnection network with minimum cost. In: Proceedings of HiPC’96, Trivandrum, India, IEEE Computer Society, pp. 176–181 (1996)Google Scholar
  5. 5.
    Das, N., Bezrukov, S.L.: Permutation admissibility in shuffle-exchange networks with arbitrary number of stages. In: Proceedings of HiPC’98, Madras, India, IEEE Computer Society, pp. 270–276 (1998)Google Scholar
  6. 6.
    Das N., Bhattacharya B.B., Bezrukov S., Menon R., Sarkar A.: Permutation routing in optical MINs with minimum number of stages. J. Syst. Archit. 48, 311–323 (2003)CrossRefGoogle Scholar
  7. 7.
    Evangelista, S.: High level Petri nets analysis with Helena. In: Proceedings of ATPN’05. Miami, FL, LNCS 3536, pp. 455–464 (2005)Google Scholar
  8. 8.
    Grammatikakis M.D., Hsu D.F., Sibeyn J.F.: Packet routing in fixed-connection networks: a survey. J. Paral. Distrib. Comput. 54, 77–132 (1998)MATHCrossRefGoogle Scholar
  9. 9.
    Hsia, C.J.A., Chen, C.Y.R.: Permutation capability of multistage interconnection networks. In: Proceedings of ICPP’90, Urbana-Champaign, IL, pp. 1338–1346 (1990)Google Scholar
  10. 10.
    Hu Q., Shen X., Liang W.: Optimally routing LC permutations on k-extra-stage cube-type networks. IEEE Trans. Comput. 45, 97–103 (1996)MATHCrossRefGoogle Scholar
  11. 11.
    Jensen K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1. Springer, Berlin (1997)Google Scholar
  12. 12.
    Jensen K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 2. Springer, Berlin (1997)Google Scholar
  13. 13.
    Khomenko V., Kondratyev A., Koutny A., Vogler W.: Merged processes: a new condenced representation of Petri net behaviour. Acta Inf. 43, 307–330 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hamez, A., Hillah, L., Kordon, F., Linard, A., Paviot-Adet, E., Renault, X., Thierry-Mieg, Y.: New features in CPN-AMI 3: focusing on the analysis of complex distributed systems. In: Proceeding of ACSD’06, June, Turku, Finland, IEEE Computer Society, pp. 273–275 (2006)Google Scholar
  15. 15.
    Kordon, F., Linard, A., Paviot-Adet, E.: Optimized colored nets unfolding. In: Proceedings FORTE’06, LNCS 4229, pp. 339–355 (2006)Google Scholar
  16. 16.
    Lenfant J.: Parallel permutations of data: a Benes network control algorithm for frequently used permutations. IEEE Trans. Comput. 27, 637–647 (1978)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Murata T.: Petri nets: properties, analysis and applications. Proc. IEEE 77, 541–580 (1989)CrossRefGoogle Scholar
  18. 18.
    Raghavendra C.S., Boppana R.V.: On self-routing in Beneš and shuffle-exchange networks. IEEE Trans. Comput. 40, 1057–1064 (1991)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sahni S.: Matrix multiplication and data routing using a partitioned optical passive stars network. IEEE Trans. Paral. Distrib. Comput. 11, 720–728 (2000)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Shen X., Xu M., Wang X.: An optimal algorithm for permutation admissibility to multistage interconnection networks. IEEE Trans. Comput. 44, 604–608 (1995)MATHCrossRefGoogle Scholar
  21. 21.
    Shen X.: An optimal O(N log N) algorithm for permutation admissibility to extra-stage cube-type networks. IEEE Trans. Comput. 44, 1144–1149 (1995)MATHCrossRefGoogle Scholar
  22. 22.
    Shen X., Yang F., Pan Y.: Equivalent permutation capabilities between time-division optical omega networks and non-optical extra-stage omega networks. IEEE Trans. Network. 9, 518–524 (2001)CrossRefGoogle Scholar
  23. 23.
    Veselovsky, G., Batovski, D.A.: A study of the permutation capability of a binary hypercube under deterministic dimension-order routing. In: Proceedings of PDPTA’03, Las Vegas, NV, SCREA Press, pp. 173–177 (2003)Google Scholar
  24. 24.
    Wu C., Feng T.: On a class of multistage interconnection networks. IEEE Trans. Comput. 29, 694–702 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceEastern Mediterranean UniversityNorth CyprusTurkey
  2. 2.Université P. & M. Curie, LIP6/MoVeParis Cedex 05France

Personalised recommendations