Advertisement

Acta Informatica

, Volume 45, Issue 7–8, pp 537–564 | Cite as

M-nets: a survey

  • Hanna Klaudel
  • Franck Pommereau
Original article

Abstract

This paper surveys the research related to the model of M-nets since it was introduced in 1995. M-nets are high-level labelled Petri nets which can be composed, like process algebra terms, using various operators. We present the core model, several of its extensions and the main applications.

Keywords

Process Algebra Hierarchical Transition Internal Place True Concurrency Causal Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Benaissa, N., Djafri, B., Hutzler, G., Klaudel, H.: Towards modelling and verification of mobile agent systems. INADIS/IBERAMIA-SBIA-SBRN’2006. Springer, Berlin (2006)Google Scholar
  3. 3.
    Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory. TCS 55, 87–136 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Best, E., Devillers, R., Hall, J.G.: The box calculus: a new causal algebra with multi-label communication. APN’92. LNCS, vol. 609. Springer, Berlin (1992)Google Scholar
  5. 5.
    Best, E., Devillers, R., Esparza, J.: General refinement and recursion for the box calculus. STACS’93. LNCS, vol. 665. Springer, Berlin (1993)Google Scholar
  6. 6.
    Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. In: EATCS Monographs on TCS. Springer, Berlin (2001)Google Scholar
  7. 7.
    Best, E., Fleischhack, H., Fra̧czak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: An M-net semantics of B(PN). SCT’95. Springer, Berlin (1995)Google Scholar
  8. 8.
    Best, E., Fra̧czak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: an algebra of high level Petri nets, with an application to the semantics of concurrent programming languages. Acta Inf. 35, 813–857 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Best, E., Fernández, C.: Nonsequential processes. In: EATCS Monographs on TCS, vol. 13. Springer, Berlin (1988)Google Scholar
  10. 10.
    Best, E., Hopkins, R.P.: B(PN)2—a basic Petri net programming notation. PARLE ’93. LNCS, vol. 694. Springer, Berlin (1993)Google Scholar
  11. 11.
    Best, E., Koutny, M.: Petri net semantics of priority systems. TCS 96(1), 175–215 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Best, E., Thielke, T.: Refinement of coloured Petri nets. FCT’97. LNCS, vol. 1279. Springer, Berlin (1997)Google Scholar
  13. 13.
    Biberstein, O., Buchs, D., Guelfi, N.: Object-oriented nets with algebraic specifications: the CO-OPN/2 formalism. APN on Object-Orientation. LNCS, vol. 2001. Springer, Berlin (2000)Google Scholar
  14. 14.
    Bouroulet, R., Klaudel, H., Pelz, E.: A semantics of security protocol language (SPL) using a class of composable high-level Petri nets. ACSD’04. IEEE, New York (2004)Google Scholar
  15. 15.
    Bouroulet, R., Klaudel, H., Pelz, E.: Modelling and verification of authentication using enhanced net semantics of SPL (security protocol language). ACSD’06. IEEE, New York (2006)Google Scholar
  16. 16.
    Bui Thanh, C., Klaudel, H.: Encapsulation in an object oriented notation based on modular Petri nets. In: Workshop on Simulation with Petri nets (satellite of ESMc’2003). Eurosis (2003)Google Scholar
  17. 17.
    Bui Thanh, C., Klaudel, H.: Object oriented modelling with high-level modular Petri nets. IFM’04. LNCS, vol. 2999. Springer, Berlin (2004)Google Scholar
  18. 18.
    Bui Thanh, C., Klaudel, H., Pommereau, F.: Box calculus with coloured buffers. DASD/ASTC’04. SCS, San Diego (2004)Google Scholar
  19. 19.
    Bui Thanh, C., Klaudel, H., Pommereau, F.: Petri nets with causal time for system verification. MTCS’02, ENTCS 68.5. Elsevier, Amsterdam (2002)Google Scholar
  20. 20.
    Bui Thanh, C.: Modèles Orientés-Objet pour la Vérification de Systèmes Concurrents. Ph.D. thesis, University of Paris 12, Créteil (2004)Google Scholar
  21. 21.
    CCITT: Specification and Description Language. CCITT Z.100. ICCTT (1992)Google Scholar
  22. 22.
    Chizzoni, A.: CLOWN: class orientation with nets. Master thesis, University of Milan (1996)Google Scholar
  23. 23.
    Crazzolara, F., Winskel, G.: Events in security protocols. In: ACM Conference on Computer and Communications Security. ACM Press, New York (2001)Google Scholar
  24. 24.
    De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: a kernel language for agents interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)CrossRefGoogle Scholar
  25. 25.
    Devillers, R., Klaudel, H.: Refinement and recursion in a high level Petri Box Calculus. STRICT’95, WiC. Springer, Berlin (1995)Google Scholar
  26. 26.
    Devillers, R., Klaudel, H.: Solving Petri net recursions through finite representation. ACST’2004. ACTA Press, Zurich (2004)Google Scholar
  27. 27.
    Devillers, R., Klaudel, H.: Synchronous and asynchronous communications in composable parameterized high-level Petri nets. Fundam. Inf. 3(66), 221–257 (2005)MathSciNetGoogle Scholar
  28. 28.
    Devillers, R., Klaudel, H., Koutny, M.: Context-based process algebras for mobility. ACSD’04. IEEE, New York (2004)Google Scholar
  29. 29.
    Devillers, R., Klaudel, R., Koutny, M.: Petri net semantics of the finite π-calculus. FORTE’2004. LNCS, vol. 3235. Springer, Berlin (2004)Google Scholar
  30. 30.
    Devillers, R., Klaudel, H., Koutny, M.: A Petri net semantics of a simple process algebra for mobility. EXPRESS/CONCUR’05. ENTCS 154(3), 71–94 (2006)MathSciNetGoogle Scholar
  31. 31.
    Devillers, R., Klaudel, H., Koutny, M.: Petri net semantics of the finite π-calculus terms. Fundam. Inf. 70(3), 203–226 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Devillers, R., Klaudel, H., Koutny, M.: A Petri net translation of π-calculus terms. ICTAC’06. LNCS, vol. 4281. Springer, Berlin (2006)Google Scholar
  33. 33.
    Devillers, R., Klaudel, H., Koutny, M.: Modelling mobility in high-level Petri nets. ACSD’07. IEEE, New York (2007)Google Scholar
  34. 34.
    Devillers, R., Klaudel, H., Koutny, M., Pommereau, F.: Asynchronous box calculus. Fundam. Inf. 54, 293–344 (2003)MathSciNetGoogle Scholar
  35. 35.
    Devillers, R., Klaudel, H., Pelz, E.: An algebraic box calculus. JALC 5(2), 81–108 (2000)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Devillers, R., Klaudel, H., Riemann, R.-C.: General refinement for high level Petri nets. FST-TCS’97. LNCS, vol. 1346. Springer, Berlin (1997)Google Scholar
  37. 37.
    Devillers, R., Klaudel, H., Riemann, R.-C.: General parameterised refinement and recursion for the M-net calculus. TCS 300, 259–300 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Durchholz, R.: Causality, time and deadlines. Data Knowl. Eng. 6, 469–477 (1991)CrossRefGoogle Scholar
  39. 39.
    Fleischhack, H., Grahlmann, B.: A Petri net semantics for B(PN)2 with procedures. PDSE’97. IEEE, New York (1997)Google Scholar
  40. 40.
    Fleischhack, H., Grahlmann, B.: A compositional Petri net semantics for SDL. ATPN’98. LNCS, vol. 1420. Springer, Berlin (1998)Google Scholar
  41. 41.
    Grahlmann, B., Best, E.: PEP: more than a Petri net tool. TACAS’96. LNCS, vol. 1055. Springer, Berlin (1996)Google Scholar
  42. 42.
    Genrich, H., Lautenbach, H.J.: System modelling with high-level Petri nets. TCS 13, 109–136 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Genrich, H.J., Lautenbach, K., Thiagarajan, P.S.: Elements of general net theory. ACGNTPS’80. LNCS, vol. 84. Springer, Berlin (1980)Google Scholar
  44. 44.
    Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inf. Control 57(2, 3), 125–147 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Grahlmann, B.: Parallel programs as Petri nets. Ph.D. thesis, University of Hildesheim, Germany (1999)Google Scholar
  46. 46.
    Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in coloured Petri nets. APN’90, LNCS 483. Springer, Berlin (1990)Google Scholar
  47. 47.
    Jensen, K.: Coloured Petri nets. Basic concepts, analysis methods and practical use. In: EATCS Monographs on TCS, vol. 1. Springer, Berlin (1992)Google Scholar
  48. 48.
    Kishinevsky, M., Cortadella, J., Kondratyev, A., Lavagno, L., Taubin, A., Yakovlev, A.: Coupling asynchrony and interrupts: place chart nets and their synthesis. ICATPN’97. LNCS, vol. 1248. Springer, Berlin (1997)Google Scholar
  49. 49.
    Khomenko, V.: Punf documentation and user guide (2002). http://homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/tools/punf
  50. 50.
    Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. TACAS’2003. LNCS, vol. 2619. Springer, Berlin (2003)Google Scholar
  51. 51.
    Klaudel, H.: Modèles algébriques, basés sur les réseaux de Petri, pour la sémantique des langages de programation concurrents. Ph.D. thesis, University of Paris 11, Orsay (1995)Google Scholar
  52. 52.
    Klaudel, H.: Parameterized M-expression semantics of parallel procedures. DAPSYS’00. Kluwer, Dordrecht (2000)Google Scholar
  53. 53.
    Klaudel, H.: Compositional high-level Petri net semantics of a parallel programming language with procedures. SCP 41(3), 195–240 (2001)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Klaudel, H., Pommereau, F.: Asynchronous links in the PBC and M-nets. ASIAN’99. LNCS, vol. 1742. Springer, Berlin (1999)Google Scholar
  55. 55.
    Klaudel, H., Pommereau, F.: A concurrent and compositional Petri net semantics of preemption. IFM’00. LNCS, vol. 1945. Springer, Berlin (2000)Google Scholar
  56. 56.
    Klaudel, H., Pommereau, F.: A concurrent semantics of static exceptions in a parallel programming language. ICATPN’01. LNCS, vol. 2075. Springer, Berlin (2001)Google Scholar
  57. 57.
    Klaudel, H., Pommereau, F.: A class of composable and preemptible high-level Petri nets with an application to multi-tasking systems. Fundam. Inf. 50(1), 33–55 (2002)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Klaudel, H., Riemann, R.-C.: High level expressions and their SOS semantics. CONCUR’97. LNCS, vol. 1243. Springer, Berlin (1997)Google Scholar
  59. 59.
    Lakos, C.: Object oriented modelling with object Petri nets. APN’97. LNCS, vol. 2001. Springer, Berlin (1997)Google Scholar
  60. 60.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1, 2), 134–152 (1997)zbMATHGoogle Scholar
  61. 61.
    Lilius, J.: OOB(PN)2: an object-oriented Petri net programming notation. In: Second Workshop on Object-Oriented Programming and Models of Concurrency (1996)Google Scholar
  62. 62.
    Lilius, J.: OB(PN)2: an object based Petri net programming notation. Euro-Par’96. LNCS, vol. 1123. Springer, Berlin (1996)Google Scholar
  63. 63.
    Lilius, J.: OB(PN)2: an object based Petri net programming notation. APN’01. LNCS, vol. 2001. Springer, Berlin (1997)Google Scholar
  64. 64.
    Lilius, J., Pelz, E.: an M-net semantics for B(PN)2 with procedures. ISCIS’96, vol. 1. Middle East Technical University (1996)Google Scholar
  65. 65.
    Mäkelä, M.: MARIA: modular reachability analyser for algebraic system nets. Online manual (1999). http://www.tcs.hut.fi/maria
  66. 66.
    Mazurkiewicz, A.: Trace theory. APN’87, Part II. LNCS, vol. 255. Springer, Berlin (1987)Google Scholar
  67. 67.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Part I and II. Information and Computation, vol. 100. Elsevier, Amsterdam (1992)Google Scholar
  68. 68.
    Petri, C.A.: Kommunikation mit Automaten. Schriften des Instituts für instrumentelle Mathematik. Universität Bonn (1962)Google Scholar
  69. 69.
    The CPN group, University of Aarhus, Denmark. The Petri net world, Petri nets tool database. http://www.daimi.au.dk/PetriNets/tools/db.html
  70. 70.
    Pommereau, F.: FIFO buffers in tie sauce. DAPSYS’00. Kluwer, Dordrecht (2000)Google Scholar
  71. 71.
    Pommereau, F.: Modèles composables et concurrents pour le temps-réel. Ph.D. thesis, University of Paris 12, Créteil (2002)Google Scholar
  72. 72.
    Pommereau, F.: Causal time calculus. FORMATS’03. LNCS, vol. 2791. Springer, Berlin (2004)Google Scholar
  73. 73.
    Pommereau, F.: SNAKES is the net algebra kit for editors and simulators. http://www.univ-paris12.fr/lacl/pommereau/soft/snakes
  74. 74.
    Pommereau, F.: Versatile boxes: a multi-purpose algebra of high-level Petri nets. DADS/SCSC’07, SCS/ACM, San Diego (2007)Google Scholar
  75. 75.
    Pommereau, F., Devillers, R., Klaudel, H.: Efficient reachability graph representation of Petri nets with unbounded counters. Infinity’07. ENTCS. Elsevier, Amsterdam (to appear)Google Scholar
  76. 76.
    Reisig, W.: Petri nets and algebraic specifications. TCS 80. Elsevier, Amsterdam (1991)Google Scholar
  77. 77.
    Richter, G.: Counting interfaces for discrete time modeling. Tech. report 26, GMD. September (1998)Google Scholar
  78. 78.
    Riemann, R-C.: Modelling of concurrent systems: structural and semantical methods in the high-level Petri net calculus. Ph.D. thesis, University of Paris 11, Orsay (1999)Google Scholar
  79. 79.
    Starke, P.H.: Processes in Petri nets. EIK 17(8), 9 (1981)MathSciNetGoogle Scholar
  80. 80.
    Störrle, H.: An evaluation of high-end tools for Petri-nets. Tech. Report Bericht 9802. Ludwig Maximilians Univerität München (1998)Google Scholar
  81. 81.
    Vogler, W.: Modular construction and partial order semantics of Petri nets. LNCS, vol. 625. Springer, Berlin (1992)Google Scholar
  82. 82.
    Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools Technol. Transf. 1(1/2), 123–133 (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.IBISCUniversité d’EvryEvryFrance
  2. 2.LACLUniv. Paris EstCréteilFrance

Personalised recommendations