Acta Informatica

, Volume 45, Issue 5, pp 383–402 | Cite as

The fibers and range of reduction graphs in ciliates

Original article

Abstract

The biological process of gene assembly transforms a nucleus (the MIC) into a functionally and physically different nucleus (the MAC). For each gene in the MIC (the input), recombination operations transform the gene to its MAC form (the output). Here we characterize which inputs obtain the same output, and moreover characterize the possible forms of the outputs. We do this in the abstract and more general setting of so-called legal strings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergeron A., Mixtacki J., Stoye J.: On sorting by translocations. In: Miyano, S., et al. (eds) RECOMB. Lecture Notes in Computer Science, vol. 3500, pp. 615–629. Springer, Berlin (2005)Google Scholar
  2. 2.
    Brijder R., Hoogeboom H.: Characterizing reduction graphs for gene assembly in ciliates. In: Harju, T., Karhumäki, J., Lepistö, A. (eds) Developments in Language Theory (DLT) 2007. Lecture Notes in Computer Science, vol. 4588, pp. 120–131. Springer, Berlin (2007)Google Scholar
  3. 3.
    Brijder, R., Hoogeboom, H., Muskulus, M.: Strategies of loop recombination in ciliates. To appear in Discrete Appl. Math. (2008). doi:10.1016/j.dam.2007.08.032
  4. 4.
    Brijder R., Hoogeboom H., Rozenberg G.: The breakpoint graph in ciliates. In: Berthold, M., et al. (eds) CompLife ’05. Lecture Notes in Computer Science, vol. 3695, pp. 128–139. Springer, Berlin (2005)Google Scholar
  5. 5.
    Brijder R., Hoogeboom H., Rozenberg G.: Reducibility of gene patterns in ciliates using the breakpoint graph. Theor. Comput. Sci. 356, 26–45 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ehrenfeucht A., Harju T., Petre I., Prescott D., Rozenberg G.: Computation in Living Cells—Gene Assembly in Ciliates. Springer, Berlin (2004)MATHGoogle Scholar
  7. 7.
    Hannenhalli S., Pevzner P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pevzner P.: Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge (2000)MATHGoogle Scholar
  9. 9.
    Setubal J., Meidanis J.: Introduction to Computional Molecular Biology. PWS Publishing Company, Boston (1997)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations