Acta Informatica

, Volume 44, Issue 2, pp 75–90 | Cite as

Decision problems for pushdown threads

Open Access
Original Article

Abstract

Threads as contained in a thread algebra emerge from the behavioral abstraction from programs in an appropriate program algebra. Threads may make use of services such as stacks, and a thread using a single stack is called a pushdown thread. Equivalence of pushdown threads is shown decidable whereas pushdown thread inclusion is undecidable. This is again an example of a borderline crossing where the equivalence problem is decidable, whereas the inclusion problem is not.

References

  1. 1.
    Zucker J.I. and Bakker J.W. (1982). Processes and the denotational semantics of concurrency. Information Control 54(1/2): 70–120 MATHGoogle Scholar
  2. 2.
    Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) Automata, Languages and Programming, 30th International Colloquium, ICALP, LNCS, vol. 2719, pp. 1–21. Springer, Eindhoven, 30 June–4 July 2003)Google Scholar
  3. 3.
    Bergstra, J.A., Bethke, I.: Predictable and reliable program code: virtual machine-based projection semantics. In: Electronic Report PRG0603, Programming Research Group, University of Amsterdam. Submitted for inclusion in the Handbook of Network and Systems Administration (2006)Google Scholar
  4. 4.
    Bergstra J.A. and Klop J.W. (1984). Process algebra for synchronous communication. Information Control 60(1/3): 109–137 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergstra J.A. and Loots M.E. (2002). Program algebra for sequential code. J. Logic Algebraic Program. 51(2): 125–156 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bergstra, J.A., Middelburg, C.A.: A thread algebra with multi-level strategic interleaving. In: Cooper, S.B., Loewe, B., Torenvliet, L. (eds.) CiE 2005, Springer, LNCS, vol. 3526, pp. 35–48 (2005)Google Scholar
  7. 7.
    Bergstra J.A. and Ponse A. (2002). Combining programs and state machines. J. Logic Algebraic Program. 51(2): 175–192 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bergstra J.A. and Ponse A. (2007). Execution architectures for program algebra. J. Appl. Logic 5(1): 170–192 CrossRefGoogle Scholar
  9. 9.
    Bird M. (1973). The equivalence problem for deterministic two-tape automata. J. Comput. Syst. Sci. 7(2): 218–236 MATHMathSciNetGoogle Scholar
  10. 10.
    Friedman E.P. (1976). The inclusion problem for simple languages. Theoret. Comput. Sci. 1: 297–316 MATHCrossRefGoogle Scholar
  11. 11.
    Greibach S. (1975). Theory of Program Structures: Schemes, Semantics, Verification. Springer, Heidelberg MATHCrossRefGoogle Scholar
  12. 12.
    Jančar, P.: Decidability questions for bisimilarity of Petri nets and some related problems. In: Proceedings of STACS94, LNCS, vol. 775, pp. 581–592. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Jančar, P., Moller, F., Sawa, Z.: Simulation problems for one-counter machines. Proceedings of SOFSEM’99: The 26th Seminar on Current Trends in Theory and Practice of Informatics, LNCS, vol. 1725, pp. 398–407. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Inclusion is undecidable for pattern languages. ICALP 93 LNCS, vol. 700, pp. 301–312. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)Google Scholar
  16. 16.
    Minsky M.L. (1961). Recursive unsolvability of post’s problem of “Tag” and other topics in theory of Turing machines. Ann. Math. 74(3): 437–455 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall International, Englewood Cliffs (1967)Google Scholar
  18. 18.
    Ohlebush E. and Ukkonen E. (1997). On the equivalence problem for E-pattern languages. Theoret. Comput. Sci. 186(1/2): 231–248 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ponse, A., van der Zwaag, M.B.: Risk assessment for one-counter threads. In: Electronic report PRG0608, Programming Research Group, University of Amsterdam. To appear in Theory of Computing Systems (2006)Google Scholar
  20. 20.
    Sénizergues, G.: L(A) = L(B)? In: Technical report 1161-97, LaBRI, Université Bordeaux (1997) Available at www.labri.u-bordeaux.fr.Google Scholar
  21. 21.
    Sénizergues G. (2001). L(A)=L(B)? decidability results from complete formal systems. Theoret. Comput. Sci. 251: 1–166 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stirling C. (2001). Decidability of DPDA equivalence. Theoret. Comput. Sci. 255: 1–31 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Valiant L.G. (1974). The equivalence problem for deterministic finite-turn pushdown automata. Information Control 25(2): 123–133 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Valiant L.G. and Patterson M. (1975). Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3): 340–350 MATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Faculty of Science, Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Utrecht UniversityDepartment of Philosophy, Applied Logic GroupUtrechtThe Netherlands

Personalised recommendations