Acta Informatica

, Volume 43, Issue 7, pp 451–476

Hybridization methods for the analysis of nonlinear systems

Original Article

Abstract

In this article, we describe some recent results on the hybridization methods for the analysis of nonlinear systems. The main idea of our hybridization approach is to apply the hybrid systems methodology as a systematic approximation method. More concretely, we partition the state space of a complex system into regions that only intersect on their boundaries, and then approximate its dynamics in each region by a simpler one. Then, the resulting hybrid system, which we call a hybridization, is used to yield approximate analysis results for the original system. We also prove important properties of the hybridization, and propose two effective hybridization construction methods, which allow approximating the original nonlinear system with a good convergence rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.-H., Nicollin X., Olivero A., Sifakis J. and Yovine S. (1995). The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1): 3–34 MATHCrossRefGoogle Scholar
  2. 2.
    Alur R., Dang T. and Ivancic F. (2006). Counter-example guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2): 250–271 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur R. and Dill D.L. (1994). A theory of timed automata. Theor. Comput. Sci. 126(2): 183–235 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alur R., Henzinger T.A., Lafferriere G. and Pappas G. (2000). Discrete abstractions of hybrid systems. Proc. IEEE 88(2): 971–984 CrossRefGoogle Scholar
  5. 5.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2034 in LNCS, pp. 63–75. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Krogh, B.H., Lynch, N. (eds.) Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 20–31. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Asarin, E., Dang, T., Maler, O.: d/dt: A tool for verification of hybrid systems. In: Ed Brinksma, Kim Guldstrand Larsen (eds.) Computer Aided Verification, vol. 2404 in LNCS, pp. 365–370. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Control and Computation, vol. 2993 LNCS, pp. 32–47. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximations. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2623 in LNCS, pp. 20–35. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Asarin E., Maler O. and Pnueli A. (1995). Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1): 35–66 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Aubin J.-P., Lygeros J., Quincampoix M., Sastry S. and Seube N. (2002). Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Autom. Control 47(1): 2–20 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: POPL’86: Principles of Programming Languages, pp. 173–183 (1986)Google Scholar
  13. 13.
    Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Krogh B., Lynch N. (eds.), Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 73–88. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Branicky M.S., Borkar V.S. and Mitter S.K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Trans. on Automatic Control 43(1): 31–45 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid systems: Computation and Control, vol. 1569 in LNCS, pp. 76–90. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Foundations of Comput. Sci. 14(4), 583–604 (2003)Google Scholar
  17. 17.
    Dang, T.: Approximate reachability computation for polynomial systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Control and Computation, vol. 3927 in LNCS, pp. 138–152. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Dang, T., Donze, A., Maler, O.: Verification of analog and mixed-signal circuits using hybrid systems techniques. In: Hu, A., Martin, A. (eds.) Formal Methods for Computer Aided Design, vol. 3312 in LNCS, pp. 21–36. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Dang, T., Maler, O.: Reachability Analysis via Face Lifting. In: Henzinger, T.A., Sastry, S. (eds.), Hybrid Systems: Computation and Control, vol. 1386 in LNCS, pp. 96–109. Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: Alur, R., G.J. Pappas, G.J. (eds.) Hybrid Systems: Computation and Control HSCC04, vol. 2993 in LNCS, pp. 280–295. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Decarlo R.A., Branicky M.S., Pettersson S. and Lennartson B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems. Proc. the IEEE 88(7): 1069–1082 CrossRefGoogle Scholar
  22. 22.
    Della Dora, J., Maignan, A., Mirica-Ruse, M., Yovine, S.: Hybrid computation. In: Proceedings International Symposium on Symbolic and Algebraic Computation ISSAC’01 (2001)Google Scholar
  23. 23.
    Dieudonné J. (1968). Calcul Infinitésimal. Collection Méthodes. Hermann, Paris MATHGoogle Scholar
  24. 24.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)Google Scholar
  25. 25.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Girard, A.: Approximate solutions of ODEs using piecewise linear vector fields. In: Proceedings of the Int. Workshop on Computer Algebra in Scientific Computing CASC’02 (2002)Google Scholar
  27. 27.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 291–305. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Greenstreet, M.R., Mitchell, I.: Reachability analysis using polygonal projections. In: Vaandrager, F., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, vol. 1569 in LNCS, pp. 76–90. Springer, Heidelberg (1999)Google Scholar
  29. 29.
    Habets, L.C.G.J.M., van Schuppen, J.H.: Control of piecewise-linear hybrid systems on simplices and rectangles. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid systems: Computation and Control, vol.. 2034 LNCS, pp. 261–273. Springer, Heidelberg (2001)Google Scholar
  30. 30.
    Hämmerlin G. and Karl-Heinz Hoffmann K.-H. (1991). Numerical Mathematics. Springer, Heidelberg Google Scholar
  31. 31.
    Hartong, W., Hedrich, L., Barke, E.: On discrete modelling and model checking for nonlinear analog systems. In: Ed Brinksma, Kim Guldstrand Larsen (eds.) Computer Aided Verification, vol. 2404 in LNCS, pp. 401–413. Springer, Heidelberg (2002)Google Scholar
  32. 32.
    Henzinger T.A., Ho P.-H. and Wong-Toi H. (1997). HyTech: A model checker for hybrid systems. Softw. Tools Technol. Transf. 1(1–2): 110–122 MATHCrossRefGoogle Scholar
  33. 33.
    Henzinger T.A., Kopke P.W., Puri A. and Varaiya P. (1998). What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1): 94–124 MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hubbard, J., West, B.: Differential equations: a dynamical system approach, part 2: higher dimensional systems. Texts in Applied Mathematics, 18 Springer, Heidelberg (1995)Google Scholar
  35. 35.
    Johansson M. and Rantzer A. (1998). Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control 43(4): 555–559 MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Computation and Control, vol. 3927 in LNCS, pp. 348–362. Springer, Heidelberg (2006)Google Scholar
  37. 37.
    Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon : a modeling language for reconfigurable hybrid systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Computation and Control, vol. 3927 in LNCS, pp. 392–406. Springer, Heidelberg (2006)Google Scholar
  38. 38.
    Kuhn H.W. (1960). Some combinatorial lemmas in topology. IBM J. Res. Dev. 4(5): 518–524 MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Krogh, B., Lynch, N. (eds.) Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 202–214. Springer, Heidelberg (2000)Google Scholar
  40. 40.
    Lafferriere G., Pappas G. and Yovine S. (2001). Symbolic reachability computation of families of linear vector fields. J. Symbolic Comput. 32(3): 231–253 MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Larsen K., Pettersson P. and Yi W. (1997). Uppaal in a nutshell. Soft. Tools Technol. Transf. 1(1–2): 134–152 MATHCrossRefGoogle Scholar
  42. 42.
    Liberzon D. (2003). Switching in systems and control. Volume in series Systems and Control: Foundations and Applications. Birkhauser, Boston MATHGoogle Scholar
  43. 43.
    Manna Z. and Pnueli A. (1991). The temporal logic of reactive and concurrent systems: specification. Springer, New York MATHGoogle Scholar
  44. 44.
    Mitchell, I., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid Systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 480–494. Springer, Heidelberg (2005)Google Scholar
  45. 45.
    Kvasnica, M., Grieder, P., Baoti, M., Morari, M.: Multi-Parametric Toolbox (MPT). In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, vol. 2993 in LNCS, pp. 448–462. Springer, Heidelberg (2004)Google Scholar
  46. 46.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, A., Pappas, G. (eds.) Hybrid Systems: Computation and Control, vol. 2993 LNCS, pp. 477–492. Springer, Heidelberg (2004)Google Scholar
  47. 47.
    Prajna, S., Papachristodoulou, A.: Analysis of switched and hybrid systems - beyond piecewise quadratic methods. In: Proceedings of the American Control Conference ACC (2003)Google Scholar
  48. 48.
    Puri, A., Varaiya, P.: Verification of sybrid systems using abstraction. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid Systems II, vol. 999 in LNCS, pp. 359–369, Springer, Heidelberg (1995)Google Scholar
  49. 49.
    Rondepierre, A., Dumas, J.G.: Algorithms for hybrid optimal control. Technical report IMAG-ccsd-00004191, arXiv math.OC/0502172 (2005)Google Scholar
  50. 50.
    Saint-Pierre, P.: Approximation of Viability Kernels and Capture Basin for Hybrid Systems. In: Proceedings of European Control Conference ECC’01, pp. 2776–2783 (2001)Google Scholar
  51. 51.
    Sastry S. (1999). Nonlinear systems: analysis, stability and control. Springer, Heidelberg MATHGoogle Scholar
  52. 52.
    Stuart A.M. and Humphries A.R. (1996). Dynamical systems and numerical analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge MATHGoogle Scholar
  53. 53.
    Stursberg, O., Kowalewski, S.: Approximating switched continuous systems by rectangular automata. In: Proceedings European Control Conference ECC, (1999)Google Scholar
  54. 54.
    Tabuada, P., Pappas, G.: Model-checking LTL over controllable linear systems is decidable, In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2623 LNCS, pp. 498–513, Springer, Heidelberg (2003)Google Scholar
  55. 55.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control, vol. 2289 LNCS, pp. 465–478, (2002)Google Scholar
  56. 56.
    Tiwari, A., Khanna, A.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, vol. 2993 LNCS, pp. 600–614. Springer, Heidelberg (2004)Google Scholar
  57. 57.
    Tomlin C., Mitchell I., Bayen A. and Oishi M. (2003). Computational techniques for the verification of hybrid systems. Proc. IEEE 91(7): 986–1001 CrossRefGoogle Scholar
  58. 58.
    Torrisi F.D. and Bemporad A. (2004). HYSDEL - A tool for generating computational hybrid models. IEEE Trans. Control Syst. Technol. 12(2): 235–249 CrossRefMathSciNetGoogle Scholar
  59. 59.
    Van der Schaft, A.J., Schumacher, J.M.: An introduction to hybrid dynamical systems. Lect. Notes in Control and Information Sciences, Vol 251. Springer, London, (2000)Google Scholar
  60. 60.
    Yovine, S.: Kronos: A verification tool for real-time systems. Soft. Tools Technol. Trans. 1(1–2), 123–133 (1997)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Université Paris 7, LIAFAParis, Cedex 5France
  2. 2.VERIMAGGieresFrance
  3. 3.Université Joseph Fourier, LMCGrenoble Cedex 9France

Personalised recommendations