Advertisement

Acta Informatica

, Volume 43, Issue 6, pp 395–417 | Cite as

Representation and uniformization of algebraic transductions

  • Stavros Konstantinidis
  • Nicolae SanteanEmail author
  • Sheng Yu
Original article

Abstract

This paper explores different means of representation for algebraic transductions, i.e., word relations realized by pushdown transducers. The relevance of this work lies more in its point of view rather than any particular result. We are aiming at giving specific techniques for obtaining, or perhaps explaining, decompositions of algebraic (and incidentally, rational) relations, relying solely on their “machine” definition rather than some complex algebraic apparatus. From this point of view, we are hoping to have demystified the heavy formalism employed in the present literature. Some of the novelties of our work are: the use of “stack languages” and “embeddings,” which eliminate the need of arbitrary context-free languages in our characterizations, the study of uniformizations for algebraic transductions and the use of the so-called stack transductions for exposing the anatomy of pushdown transducers.

Keywords

Word Relation Regular Language Algebraic Function Algebraic Relation Output Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho A.V., Ullman J.D. (1972) The Theory of Parsing, Translation and Compiling, vol. 1. Prentice-Hall, Englewood CliffsGoogle Scholar
  2. 2.
    Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, vol. 1, Word Language Grammar, pp. 111–174. Springer, Berlin Heidelberg New York (1997)Google Scholar
  3. 3.
    Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner, Stuttgart (1979)Google Scholar
  4. 4.
    Choffrut C., Culik K. (1983) Properties of finite and pushdown transducers. SIAM J Comput 12(2): 300–315zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen A. Program analysis and transformation: from the polytope model to formal languages. Thése de Doctorat de l’Universitè de Versailles, reported by Jean Berstel (1999)Google Scholar
  6. 6.
    Eilenberg S. (1967) Algèbre Catégorique et Théorie des Automates. Institut H. Poincaré, Université de ParisGoogle Scholar
  7. 7.
    Eilenberg S. (1974) Automata, Languages and Machines, vol. A. Academic, New YorkzbMATHGoogle Scholar
  8. 8.
    Eilenberg S. (1976) Automata, Languages and Machines, vol. B. Academic, New YorkzbMATHGoogle Scholar
  9. 9.
    Fliess M. (1970) Transductions algebriques. R.A.I.R.O., R1, 109–125zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ginsburg S. (1966) The Mathematical Theory of Context-Free Languages. McGraw-Hill, New YorkzbMATHGoogle Scholar
  11. 11.
    Kobayashi K. (1969) Classification of formal languages by functional binary transductions. Info Control, 15(1): 95–109zbMATHCrossRefGoogle Scholar
  12. 12.
    Nivat M. (1968) Transductions des langages de Chomsky. Ann Inst Fourier 18, 339–456zbMATHMathSciNetGoogle Scholar
  13. 13.
    Sakarovitch J. (2003) Éléments de Théorie des Automates. Vuibert Informatique, ParisGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stavros Konstantinidis
    • 1
  • Nicolae Santean
    • 2
    Email author
  • Sheng Yu
    • 3
  1. 1.Department of Mathematics and Computing ScienceSaint Mary’s UniversityHalifaxCanada
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  3. 3.Department of Computer ScienceUniversity of Western OntarioLondonCanada

Personalised recommendations