Acta Informatica

, Volume 42, Issue 6–7, pp 419–428 | Cite as

Embedding linear orders in grids

  • Andrzej Ehrenfeucht
  • Tero Harju
  • Grzegorz Rozenberg
Original Article
  • 22 Downloads

Abstract

A grid (or a mesh) is a two-dimensional permutation: an m× n-grid of size mn is an m× n-matrix where the entries run through the elements {1,2, …, mn}. We prove that if δ1 and δ2 are any two linear orders on {1,2, …, N}, then they can be simultaneously embedded (in a well defined sense) into a unique grid having the smallest size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, K.A., Fishburn, P.C., Roberts, F.S.: A new characterization of partial orders of dimension two. Ann. New York Acad. Sci. 175, 23–24 (1970)Google Scholar
  2. 2.
    Baker, K.A., Fishburn, P.C., Roberts, F.S.: Partial orders of dimension 2. Networks 2, 11–28 (1972)Google Scholar
  3. 3.
    Dushnik, B., Miller, E.W.: Partially ordered sets. Amer. J. Math. 63, 600–610 (1941)Google Scholar
  4. 4.
    Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures, World Scientific, Singapore (1999)Google Scholar
  5. 5.
    Ehrenfeucht, A., Harju, T., ten Pas, P., Rozenberg, G.: Permutations, parenthesis words, and Schröder numbers. Discrete Math. 190, 259–264 (1998)Google Scholar
  6. 6.
    Ehrenfeucht, A., Rozenberg, G.: T-structures, T-functions, and texts. Theoret. Comput. Sci. 116, 227–290 (1993)CrossRefGoogle Scholar
  7. 7.
    Ehrenfeucht, A., ten Pas, P., Rozenberg, G.: Combinatorial properties of texts. RAIRO Inform. Théor. Appl. 27, 433–464 (1993)Google Scholar
  8. 8.
    Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math. 23, 160–175 (1971)Google Scholar
  9. 9.
    Trotter, W.T.: Combinatorics and Partially Ordered Sets. Dimension Theory, The Johns Hopkins Univ. Press, Baltimore (1992)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Andrzej Ehrenfeucht
    • 1
  • Tero Harju
    • 2
  • Grzegorz Rozenberg
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of MathematicsUniversity of TurkuTurkuFinland
  3. 3.Leiden Institute for Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations