Skip to main content

Advertisement

Log in

Clivus length distinguishes between asymptomatic healthy controls and symptomatic adult women with Chiari malformation type I

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

While the presence of cerebellar tonsillar descent in radiological images has been used as evidence of Chiari malformation type I (CMI), tonsillar ectopia alone is insufficient to identify individuals with symptomatic CMI. This study sought to identify differences in brain morphology between symptomatic CMI and healthy controls in adult females.

Methods

Two hundred and ten adult females with symptomatic CMI and 90 age- and body mass index-matched asymptomatic female controls were compared using seven brain morphometric measures visible on magnetic resonance images. The CMI and control groups were divided into four subgroups based on the tonsillar position (TP) relative to the foramen magnum: group 1 was made up of healthy controls with normal TP (TP < 0 mm); group 2 was comprised of control individuals with low-lying TP (1–5 mm); group 3 was comprised of symptomatic CMI patients with low-lying TP (1–5 mm); group 4 contained symptomatic CMI patients with severe tonsillar descent (6–13 mm).

Results

All morphometrics for symptomatic CMI with severe tonsillar descent were significantly different than those for both control groups. The CMI group with low-lying TP was significantly different for four measures when compared to controls with normal TP. However, only clivus length was statistically different between the CMI and healthy control groups with low-lying TP.

Conclusion

This study demonstrates that clivus length distinguishes adult female healthy individuals with low-lying tonsils from those with symptomatic CMI. Further investigation is required to understand the importance of a shorter clivus length on CMI symptomatology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chiari H (1891) Ueber Veränderungen des Kleinhirns infolge von Hydrocephalie des Grosshirns1. DMW-Deutsche Medizinische Wochenschrift 17(42):1172–1175

    Article  Google Scholar 

  2. Stroke NIoNDa (2018) Chiari Malformation Fact Sheet. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Chiari-Malformation-Fact-Sheet. Accessed 04.22.2019 2019

  3. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, Speer MC (1999) Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 44(5):1005–1017

    Article  CAS  Google Scholar 

  4. Fischbein R, Saling JR, Marty P, Kropp D, Meeker J, Amerine J, Chyatte MR (2015) Patient-reported Chiari malformation type I symptoms and diagnostic experiences: a report from the national Conquer Chiari Patient Registry database. Neurol Sci 36(9):1617–1624. https://doi.org/10.1007/s10072-015-2219-9

    Article  PubMed  Google Scholar 

  5. Shaikh AG, Ghasia FF (2015) Neuro-ophthalmology of type 1 Chiari malformation. Expert Rev Ophthalmol 10(4):351–357. https://doi.org/10.1586/17469899.2015.1057505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Smith BW, Strahle J, Bapuraj JR, Muraszko KM, Garton HJ, Maher CO (2013) Distribution of cerebellar tonsil position: implications for understanding Chiari malformation. J Neurosurg 119(3):812–819. https://doi.org/10.3171/2013.5.jns121825

    Article  PubMed  Google Scholar 

  7. Speer MC, Enterline DS, Mehltretter L, Hammock P, Joseph J, Dickerson M, Ellenbogen RG, Milhorat TH, Hauser MA, George TM (2003) Review article: Chiari type I malformation with or without syringomyelia: prevalence and genetics. J Genet Couns 12(4):297–311. https://doi.org/10.1023/a:1023948921381

    Article  PubMed  Google Scholar 

  8. Strahle J, Muraszko KM, Kapurch J, Bapuraj JR, Garton HJ, Maher CO (2011) Natural history of Chiari malformation type I following decision for conservative treatment. J Neurosurg Pediatr 8(2):214–221. https://doi.org/10.3171/2011.5.peds1122

    Article  PubMed  Google Scholar 

  9. Houston JR, Allen PA, Rogers JM, Lien M-C, Allen NJ, Hughes ML, Bapuraj JR, Eppelheimer MS, Loth F, Stoodley MA, Vorster SJ, Luciano MG (2019) Type I Chiari malformation, RBANS performance, and brain morphology: connecting the dots on cognition and macrolevel brain structure. Neuropsychology 33(5):725–738. https://doi.org/10.1037/neu0000547

    Article  PubMed  Google Scholar 

  10. Alperin N, Loftus JR, Oliu CJ, Bagci AM, Lee SH, Ertl-Wagner B, Green B, Sekula R (2014) Magnetic resonance imaging measures of posterior cranial fossa morphology and cerebrospinal fluid physiology in Chiari malformation type I. Neurosurgery 75(5):515–522; discussion 522. https://doi.org/10.1227/neu.0000000000000507

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dufton JA, Habeeb SY, Heran MK, Mikulis DJ, Islam O (2011) Posterior fossa measurements in patients with and without Chiari I malformation. Can J Neurol Sci 38(3):452–455

    Article  Google Scholar 

  12. Eppelheimer MS, Houston JR, Bapuraj JR, Labuda R, Loth DM, Braun AM, Allen NJ, Heidari Pahlavian S, Biswas D, Urbizu A, Martin BA, Maher CO, Allen PA, Loth F (2018) A retrospective 2D morphometric analysis of adult female Chiari type I patients with commonly reported and related conditions. Front Neuroanat 12:2. https://doi.org/10.3389/fnana.2018.00002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandes YB, Perestrelo PF, Noritomi PY, Mathias RN, Silva JV, Joaquim AF (2016) 3-D simulation of posterior fossa reduction in Chiari I. Arq Neuropsiquiatr 74(5):405–408. https://doi.org/10.1590/0004-282x20160041

    Article  PubMed  Google Scholar 

  14. Houston JR, Eppelheimer MS, Pahlavian SH, Biswas D, Urbizu A, Martin BA, Bapuraj JR, Luciano M, Allen PA, Loth F (2018) A morphometric assessment of type I Chiari malformation above the McRae line: a retrospective case-control study in 302 adult female subjects. J Neuroradiol 45(1):23–31. https://doi.org/10.1016/j.neurad.2017.06.006

    Article  PubMed  Google Scholar 

  15. Hwang HS, Moon JG, Kim CH, Oh SM, Song JH, Jeong JH (2013) The comparative morphometric study of the posterior cranial fossa : what is effective approaches to the treatment of Chiari malformation type 1? J Korean Neurosurg Soc 54(5):405–410. https://doi.org/10.3340/jkns.2013.54.5.405

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sekula RF Jr, Jannetta PJ, Casey KF, Marchan EM, Sekula LK, McCrady CS (2005) Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cerebrospinal Fluid Res 2:11. https://doi.org/10.1186/1743-8454-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Taştemur Y, Sabanciogullari V, Sönmez M, Cimen M, Saik I (2017) The relationship of the posterior cranial Fossa, the cerebrum, and cerebellum morphometry with tonsiller herniation. Iran J Radiol 14(1):1–11. https://doi.org/10.5812/iranjradiol.24436

    Article  Google Scholar 

  18. Urbizu A, Poca MA, Vidal X, Rovira A, Sahuquillo J, Macaya A (2014) MRI-based morphometric analysis of posterior cranial fossa in the diagnosis of chiari malformation type I. J Neuroimaging 24(3):250–256. https://doi.org/10.1111/jon.12007

    Article  PubMed  Google Scholar 

  19. Biswas D, Eppelheimer MS, Houston JR, Ibrahimy A, Bapuraj JR, Labuda R, Allen PA, Frim D, Loth F (2019) Quantification of cerebellar crowding in type I Chiari malformation. Ann Biomed Eng 47(3):731–743. https://doi.org/10.1007/s10439-018-02175-z

    Article  PubMed  Google Scholar 

  20. Allen PA, Delahanty D, Kaut KP, Li X, Garcia M, Houston JR, Tokar DM, Loth F, Maleki J, Vorster S, Luciano MG (2018) Chiari 1000 Registry Project: assessment of surgical outcome on self-focused attention, pain, and delayed recall. Psychol Med 48(10):1634–1643. https://doi.org/10.1017/S0033291717003117

    Article  PubMed  CAS  Google Scholar 

  21. Kavak RP, Özdemir M (2019) Impact of morphological measurements on symptoms in Chiari malformation type 1. Journal of Surgery and Medicine 3. doi:https://doi.org/10.28982/josam.572881

  22. Huang CWC, Chang Y-M, Brook A, Bezuidenhout AF, Bhadelia RA (2020) Clinical utility of 2-D anatomic measurements in predicting cough-associated headache in Chiari I malformation. Neuroradiology. 62:593–599. https://doi.org/10.1007/s00234-019-02356-0

    Article  PubMed  Google Scholar 

  23. Khalsa SSS, Geh N, Martin BA, Allen PA, Strahle J, Loth F, Habtzghi D, Urbizu Serrano A, McQuaide D, Garton HJL, Muraszko KM, Maher CO (2018) Morphometric and volumetric comparison of 102 children with symptomatic and asymptomatic Chiari malformation type I. Journal of Neurosurgery: Pediatrics PED 21(1):65–71. https://doi.org/10.3171/2017.8.PEDS17345

    Article  Google Scholar 

  24. Bolognese PA, Brodbelt A, Bloom AB, Kula RW (2019) Chiari I malformation: opinions on diagnostic trends and controversies from a panel of 63 international experts. World Neurosurgery 130:e9–e16. https://doi.org/10.1016/j.wneu.2019.05.098

    Article  PubMed  Google Scholar 

  25. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson-Prior L, Marcus D, Michalareas G, Moeller S, Oostenveld R, Petersen SE, Prior F, Schlaggar BL, Smith SM, Snyder AZ, Xu J, Yacoub E (2012) The Human Connectome Project: a data acquisition perspective. NeuroImage 62(4):2222–2231. https://doi.org/10.1016/j.neuroimage.2012.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aydin S, Hanimoglu H, Tanriverdi T, Yentur E, Kaynar MY (2005) Chiari type I malformations in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol 64(3):237–241; discussion 241. https://doi.org/10.1016/j.surneu.2005.02.021

    Article  PubMed  Google Scholar 

  27. Badie B, Mendoza D, Batzdorf U (1995) Posterior fossa volume and response to suboccipital decompression in patients with Chiari I malformation. Neurosurgery 37(2):214–218

    Article  CAS  Google Scholar 

  28. Karagoz F, Izgi N, Kapijcijoglu Sencer S (2002) Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir 144(2):165–171; discussion 171. https://doi.org/10.1007/s007010200020

    Article  PubMed  CAS  Google Scholar 

  29. Milhorat TH, Nishikawa M, Kula RW, Dlugacz YD (2010) Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management. Acta Neurochir 152(7):1117–1127. https://doi.org/10.1007/s00701-010-0636-3

    Article  PubMed  Google Scholar 

  30. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y (1997) Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 86(1):40–47. https://doi.org/10.3171/jns.1997.86.1.0040

    Article  PubMed  CAS  Google Scholar 

  31. Rai R, Iwanaga J, Shokouhi G, Loukas M, Mortazavi MM, Oskouian RJ, Tubbs RS (2018) A comprehensive review of the clivus: anatomy, embryology, variants, pathology, and surgical approaches. Childs Nerv Syst 34(8):1451–1458. https://doi.org/10.1007/s00381-018-3875-x

    Article  PubMed  Google Scholar 

  32. Nwotchouang BST, Eppelheimer MS, Bishop P, Biswas D, Andronowski JM, Bapuraj JR, Frim D, Labuda R, Amini R, Loth F (2019) Three-dimensional CT morphometric image analysis of the clivus and sphenoid sinus in Chiari malformation type I. Ann Biomed Eng 47:2284–2295. https://doi.org/10.1007/s10439-019-02301-5

    Article  PubMed  Google Scholar 

  33. Fernandes YB, Ramina R, Campos-Herrera CR, Borges G (2013) Evolutionary hypothesis for Chiari type I malformation. Med Hypotheses 81(4):715–719. https://doi.org/10.1016/j.mehy.2013.07.035

    Article  PubMed  Google Scholar 

  34. Graham C, Mohseni M (2019) Abducens nerve (CN VI) palsy. In: StatPearls. Treasure Island (FL),

  35. Nguyen V, Varacallo M (2019) Neuroanatomy, cranial nerve 6 (abducens). In: StatPearls. Treasure Island (FL),

  36. Miki T, Ito H, Kawai H, Nakanishi T (1999) Chiari malformation (type I) associated with bilateral abducens nerve palsy: case report. No shinkei geka Neurological surgery 27(11):1037–1042

    PubMed  CAS  Google Scholar 

  37. Massey SL, Buland J, Hauber S, Piatt J, Goraya J, Faerber E, Valencia I (2011) Acute VI nerve palsy in a 4 year-old girl with Chiari I malformation and pontomedullary extension of syringomyelia: case report and review of the literature. Eur J Paediatr Neurol 15(4):303–309. https://doi.org/10.1016/j.ejpn.2011.04.001

    Article  PubMed  Google Scholar 

  38. Allen PA, Houston JR, Pollock JW, Buzzelli C, Li X, Harrington AK, Martin BA, Loth F, Lien M-C, Maleki J, Luciano MG (2014) Task-specific and general cognitive effects in Chiari malformation type I. PLoS One 9(4):e94844–e94844. https://doi.org/10.1371/journal.pone.0094844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. García M, Amayra I, Lázaro E, López-Paz JF, Martínez O, Pérez M, Berrocoso S, Al-Rashaida M (2018) Comparison between decompressed and non-decompressed Chiari malformation type I patients: a neuropsychological study. Neuropsychologia 121:135–143. https://doi.org/10.1016/j.neuropsychologia.2018.11.002

    Article  PubMed  Google Scholar 

  40. Garcia MA, Allen PA, Li X, Houston JR, Loth F, Labuda R, Delahanty DL (2019) An examination of pain, disability, and the psychological correlates of Chiari malformation pre- and post-surgical correction. Disability and Health Journal 12(4):649–656. https://doi.org/10.1016/j.dhjo.2019.05.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Conquer Chiari for providing funding for this research work. The authors would also like to acknowledge the contribution of Natalie Allen, and Audrey Braun for their support in the morphometric measurements.

Funding

The study was funded by Conquer Chiari.

Author information

Authors and Affiliations

Authors

Contributions

BSTN was responsible for data processing, data analysis, and manuscript writing. ME and DB were responsible for software development, data analysis, manuscript review and editing. AI and JH were responsible for data analysis, manuscript review, and editing. RL, JB, PA, and FL were responsible for project oversight and providing expertise in neuroradiology.

Corresponding author

Correspondence to Blaise Simplice Talla Nwotchouang.

Ethics declarations

Conflict of interest

Author Jayapalli Rajiv Bapuraj is a recipient of a research grant from Conquer Chiari.

Ethical approval

This study was approved by the local institutional review board at The University of Akron. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwotchouang, B.S.T., Eppelheimer, M.S., Ibrahimy, A. et al. Clivus length distinguishes between asymptomatic healthy controls and symptomatic adult women with Chiari malformation type I. Neuroradiology 62, 1389–1400 (2020). https://doi.org/10.1007/s00234-020-02453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02453-5

Keywords

Navigation