Advertisement

Utilization of functional MRI language paradigms for pre-operative mapping: a systematic review

  • Hanani Abdul MananEmail author
  • Elizabeth A. Franz
  • Noorazrul Yahya
Functional Neuroradiology

Abstract

Purpose

Functional MRI (fMRI) can be employed to non-invasively localize brain regions involved in functional areas of language in patients with brain tumour, for applications including pre-operative mapping. The present systematic review was conducted to explore prevalence of different language paradigms utilised in conjunction with fMRI approaches for pre-operative mapping, with the aim of assessing their effectiveness and suitability.

Methods

A systematic literature search of brain tumours in the context of fMRI methods applied to pre-operative mapping for language functional areas was conducted using PubMed/MEDLINE and Scopus electronic database following PRISMA guidelines. The article search was conducted between the earliest record and March 1, 2019. References and citations were checked in Google Scholar database.

Results

Twenty-nine independent studies were identified, comprising 1031 adult participants with 976 patients characterised with different types and sizes of brain tumours, and the remaining 55 being healthy controls. These studies evaluated functional language areas in patients with brain tumours prior to surgical interventions using language-based fMRI. Results demonstrated that 86% of the studies used a Word Generation Task (WGT) to evoke functional language areas during pre-operative mapping. Fifty-seven percent of the studies that used language-based paradigms in conjunction with fMRI as a pre-operative mapping tool were in agreement with intra-operative results of language localization.

Conclusions

WGT was most commonly utilised and is proposed as a suitable and useful technique for a language-based paradigm fMRI for pre-operative mapping. However, based on available evidence, WGT alone is not sufficient. We propose a combination and convergence paradigms for a more sensitive and specific map of language function for pre-operative mapping. A standard guideline for clinical applications should be established.

Keywords

Brain tumour fMRI Language Broca’s and Wernicke’s area Word Generation Task 

Abbreviation

WADA test

The intracarotid sodium amobarbital

fMRI

Functional magnetic resonance imaging

IOS

Intraoperative stimulation

LN

Language network

LGG

Low grade glioma

HGG

High grade glioma

STS

Superior temporal sulcus

IFG

Inferior frontal gyrus

STG

Superior temporal gyrus

MFG

Middle frontal gyrus

SFG

Superior frontal gyrus

PCG

Pre-central gyrus

Post-CG

Post-central gyrus

PCC

Posterior cingulate cortex

TPJ

Temporal parietal junction

PMC

Primary motor cortex

HCs

Healthy controls

ReHo

Regional homogeneity

LI

Laterality Index

NP

Neuropsychological assessment

WGT

Word Generation Task

Notes

Funding information

This work was supported by the Geran Galakan Penyelidik Muda (Incentive Grant for Young Researchers) Universiti Kebangsaan Malaysia GGPM-2017-016.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Abdul Manan H et al (2017) Observation of tumour-induced reorganization in structural and functional architecture of the brain in three pre-surgical patients with left frontal-temporal brain tumour: a combination of MEG, DTI and neuropsychological assessment. Sains Malaysiana 46(10):1877–1886CrossRefGoogle Scholar
  2. 2.
    Polczynska M et al (2017) Improving language mapping in clinical fMRI through assessment of grammar. Neuroimage Clin 15:415–427PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yahya N, Manan HA (2019) Utilisation of diffusion tensor imaging in intracranial radiotherapy and radiosurgery planning for white matter dose optimisation: a systematic review. World NeurosurgGoogle Scholar
  4. 4.
    Sair HI, Yahyavi-Firouz-Abadi N, Calhoun VD, Airan RD, Agarwal S, Intrapiromkul J, Choe AS, Gujar SK, Caffo B, Lindquist MA, Pillai JJ (2016) Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: Comparison with task fMRI. Hum Brain Mapp 37(3):913–923PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Morrison MA et al (2016) Sources of variation influencing concordance between functional MRI and direct cortical stimulation in brain tumor surgery. Front Neurosci 10:461PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Picht T et al (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72(5):808–819PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kemp S et al (2018) Concordance between the Wada test and neuroimaging lateralization: Influence of imaging modality (fMRI and MEG) and patient experience. Epilepsy Behav 78:155–160PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zacà D, Nickerson JP, Deib G, Pillai JJ (2012) Effectiveness of four different clinical fMRI paradigms for preoperative regional determination of language lateralization in patients with brain tumors. Neuroradiology 54(9):1015–1025PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kristo G et al (2015) Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery. Cortex 64:235–248PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Benjamin CFA, Dhingra I, Li AX, Blumenfeld H, Alkawadri R, Bickel S, Helmstaedter C, Meletti S, Bronen RA, Warfield SK, Peters JM, Reutens D, Połczyńska MM, Hirsch LJ, Spencer DD (2018) Presurgical language fMRI: technical practices in epilepsy surgical planning. Hum Brain Mapp 39(10):4032–4042PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Shinoura N et al (2007) Functional magnetic resonance imaging is more reliable than somatosensory evoked potential or mapping for the detection of the primary motor cortex in proximity to a tumor. Stereotact Funct Neurosurg 85(2-3):99–105PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, Aquino D, Marras C, Caldiroli D, Broggi G (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248(2):579–589PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Matthews PM, Honey GD, Bullmore ET (2006) applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7(9):732–744PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wood JM et al (2011) Impact of brain tumor location on morbidity and mortality: a retrospective functional MR imaging study. AJNR Am J Neuroradiol 32(8):1420–1425PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Brennan NP, Peck KK, Holodny A (2016) Language mapping using fMRI and direct cortical stimulation for brain tumor surgery: the good, the bad, and the questionable. Top Magn Reson Imaging 25(1):1–10PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Stippich C (2007)Google Scholar
  17. 17.
    Klein D et al (1995) The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci 92(7):2899–2903PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Thompson-Schill SL, D'Esposito M, Kan IP (1999) Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron 23(3):513–522PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vannest JJ, Karunanayaka PR, Altaye M, Schmithorst VJ, Plante EM, Eaton KJ, Rasmussen JM, Holland SK (2009) Comparison of fMRI data from passive listening and active-response story processing tasks in children. J Magn Reson Imaging 29(4):971–976PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Plante E, Holland SK, Schmithorst VJ (2006) Prosodic processing by children: an fMRI study. Brain Lang 97(3):332–342PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Manan HA et al (2015) Aging effects on working memory: fronto-parietal network involvement on tasks involving speech stimuli. Neurol Psychiatry Brain Res 21(1):64–72CrossRefGoogle Scholar
  22. 22.
    Manan HA et al (2018) Effects of aging and background babble noise on speech perception processing: an fMRI study. Neurophysiology 49(6):441–452CrossRefGoogle Scholar
  23. 23.
    Perani D et al (2003) A fMRI study of word retrieval in aphasia. Brain Lang 85(3):357–368PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Vodrahalli K et al (2018) Mapping between fMRI responses to movies and their natural language annotations. Neuroimage 180(Pt A):223–231PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yahya N, Chua XJ, Manan HA, Ismail F (2018) Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies. Strahlenther Onkol 194(8):780–786PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yahya N, Zuber S, Manan H (2018) EP-2002: Ethnicity information in toxicity-related radiogenomic studies: a systematic review. Radiother Oncol 127:S1090CrossRefGoogle Scholar
  28. 28.
    Pillai JJ, Zaca D (2011) Relative utility for hemispheric lateralization of different clinical fMRI activation tasks within a comprehensive language paradigm battery in brain tumor patients as assessed by both threshold-dependent and threshold-independent analysis methods. NeuroImage 54(Suppl 1):S136–S145PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ruge MI et al (1999) Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg 72(2-4):95–102PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B, Nennig E, Tronnier VM, Sartor K (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243(3):828–836PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Roux FE et al (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345 discussion 1345-7PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Devi B et al (2018) Preoperative functional magnetic resonance imaging in patients undergoing surgery for tumors around left (dominant) inferior frontal gyrus region. Surg Neurol Int 9(1):126PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dennis M et al (2013) Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 37(10):2760–2773PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Anderson V, Spencer-Smith M, Wood A (2011) Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134(8):2197–2221PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gębska-Kośla K et al (2017) Reorganization of language centers in patients with brain tumors located in eloquent speech areas – a pre- and postoperative preliminary fMRI study. Neurol Neurochir Pol 51(5):403–410PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Majos A (2015) Reorganization of language areas in patient with a frontal lobe low grade glioma – fMRI case study. Pol J Radiol 80:290–295PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kosla K et al (2012) Functional rearrangement of language areas in patients with tumors of the central nervous system using functional magnetic resonance imaging. Pol J Radiol 77(3):39–45PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Petrovich N et al (2005) Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. J Neurosurg 103(2):267–274PubMedCrossRefGoogle Scholar
  39. 39.
    Kinno R et al (2014) Differential reorganization of three syntax-related networks induced by a left frontal glioma. Brain 137(4):1193–1212PubMedCrossRefGoogle Scholar
  40. 40.
    Kim J-H, Amankulor NM, Peck KK, Brennan N, Gutin PH, Holodny AI (2013) Resection of glioma in an fMRI-defined “split” Broca’s area. Neurocase 20(5):481–486PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Grummich P et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. NeuroImage 32(4):1793–1803PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mauler J, Neuner I, Neuloh G, Fimm B, Boers F, Wiesmann M, Clusmann H, Langen KJ, Shah NJ (2017) Dissociated crossed speech areas in a tumour patient. Case Rep Neurol 9(2):131–136PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhan W et al (2013) Group independent component analysis and functional MRI examination of changes in language areas associated with brain tumors at different locations. PLoS One 8(3):e59657CrossRefGoogle Scholar
  44. 44.
    Rosenberg K, Liebling R, Avidan G, Perry D, Siman-Tov T, Andelman F, Ram Z, Fried I, Hendler T (2008) Language related reorganization in adult brain with slow growing glioma: fMRI prospective case-study. Neurocase 14(6):465–473PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Schlösser R, Hunsche S, Gawehn J, Grunert P, Vucurevic G, Gesierich T, Kaufmann B, Rossbach W, Stoeter P (2002) Characterization of BOLD-fMRI signal during a verbal fluency paradigm in patients with intracerebral tumors affecting the frontal lobe. Magn Reson Imaging 20(1):7–16PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mahdavi A, Azar R, Shoar MH, Hooshmand S, Mahdavi A, Kharrazi HH (2015) Functional MRI in clinical practice: assessment of language and motor for pre-surgical planning. Neuroradiol J 28(5):468–473PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Trinh VT, Fahim DK, Maldaun MV, Shah K, McCutcheon I, Rao G, Lang F, Weinberg J, Sawaya R, Suki D, Prabhu SS (2014) Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance. Stereotact Funct Neurosurg 92(5):315–322PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Meier MP, Ilmberger J, Fesl G, Ruge MI (2013) Validation of functional motor and language MRI with direct cortical stimulation. Acta Neurochir 155(4):675–683PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kuchcinski G, Mellerio C, Pallud J, Dezamis E, Turc G, Rigaux-Viodé O, Malherbe C, Roca P, Leclerc X, Varlet P, Chrétien F, Devaux B, Meder JF, Oppenheim C (2015) Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology 84(6):560–568PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tie Y, Whalen S, Suarez RO, Golby AJ (2008) Group independent component analysis of language fMRI from word generation tasks. Neuroimage 42(3):1214–1225PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Silva MA, See AP, Essayed WI, Golby AJ, Tie Y (2018) Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage: Clinical 17:794–803CrossRefGoogle Scholar
  52. 52.
    Matthews PM (2015) Clinical Applications of fMRI 30:611-632.  https://doi.org/10.1007/978-1-4899-7591-1_21 CrossRefGoogle Scholar
  53. 53.
    Carpenter PA, Just MA, Keller TA, Eddy WF, Thulborn KR (1999) Time course of fMRI-activation in language and spatial networks during sentence comprehension. Neuroimage 10(2):216–224PubMedCrossRefGoogle Scholar
  54. 54.
    de Bruin A, Roelofs A, Dijkstra T, Fitzpatrick I (2014) Domain-general inhibition areas of the brain are involved in language switching: fMRI evidence from trilingual speakers. Neuroimage 90:348–359PubMedCrossRefGoogle Scholar
  55. 55.
    Chee MW, Buckner RL, Savoy RL (1998) Right hemisphere language in a neurologically normal dextral: a fMRI study. Neuroreport 9(15):3499–3502PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ebner K, Lidzba K, Hauser TK, Wilke M (2011) Assessing language and visuospatial functions with one task: a “dual use” approach to performing fMRI in children. Neuroimage 58(3):923–929PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tomczak RJ, Wunderlich AP, Wang Y, Braun V, Antoniadis G, Görich J, Richter HP, Brambs HJ (2000) fMRI for preoperative neurosurgical mapping of motor cortex and language in a clinical setting. J Comput Assist Tomogr 24(6):927–934PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wu J et al (2015) Direct evidence from intraoperative electrocortical stimulation indicates shared and distinct speech production center between Chinese and English languages. Hum Brain Mapp 36(12):4972–4985PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Faro SH, Mohamed FB (2006) Functional MRI: basic principles and clinical applications. https://www.springer.com/cn/book/9780387230467 CrossRefGoogle Scholar
  60. 60.
    Black DF, Vachha B, Mian A, Faro SH, Maheshwari M, Sair HI, Petrella JR, Pillai JJ, Welker K (2017) American Society of Functional Neuroradiology-recommended fMRI paradigm algorithms for presurgical language assessment. AJNR Am J Neuroradiol 38(10):E65–E73PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Barnett A, Marty-Dugas J, McAndrews MP (2014) Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav 32:114–120PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pak RW, Hadjiabadi DH, Senarathna J, Agarwal S, Thakor NV, Pillai JJ, Pathak AP (2017) Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors. J Cereb Blood Flow Metab 37(11):3475–3487PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ajithkumar T, Price S, Horan G, Burke A, Jefferies S (2017) Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 18(2):e91–e100PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rutten GJ, Ramsey NF, van Rijen P, van Veelen C (2002) Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang 80(3):421–437PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Mo L, Liu HL, Jin H, Yang YL (2005) Brain activation during semantic judgment of Chinese sentences: a functional MRI study. Hum Brain Mapp 24(4):305–312PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Baciu M et al (2016) Functional MRI evidence for the decline of word retrieval and generation during normal aging. Age (Dordr) 38(1):3CrossRefGoogle Scholar
  67. 67.
    Tieleman A et al (2009) Preoperative fMRI in tumour surgery. Eur Radiol 19(10):2523–2534PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of RadiologyUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  2. 2.Department of Psychology and fMRIotagoUniversity of OtagoDunedinNew Zealand
  3. 3.Diagnostic Imaging & Radiotherapy Program, Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations