Advertisement

Differentiating intracranial solitary fibrous tumor/hemangiopericytoma from meningioma using diffusion-weighted imaging and susceptibility-weighted imaging

  • Tanhui Chen
  • Bingqing Jiang
  • Yingyan Zheng
  • Dejun She
  • Hua Zhang
  • Zhen Xing
  • Dairong CaoEmail author
Diagnostic Neuroradiology
  • 38 Downloads

Abstract

Purpose

Intracranial solitary fibrous tumor/hemangiopericytoma (SFT/HPC) and meningioma are difficult to distinguish owing to their overlapping imaging manifestation on routine magnetic resonance imaging. The purpose of this study was to assess whether SFT/HPC can be differentiated from meningioma with diffusion-weighted imaging (DWI) and susceptibility-weighted imaging (SWI).

Methods

We retrospectively reviewed DWI, SWI, conventreional MR, and CT imaging features of 16 patients with SFT/HPC and 96 patients with meningioma. The apparent diffusion coefficient (ADC) value, normalized ADC (nADC) value, and degree of intratumoral susceptibility signal intensity (ITSS) were compared between SFT/HPCs and meningiomas using two-sample t tests, and among SFT/HPCs, low-grade and high-grade meningioma were tested using one-way analysis of variance (ANOVA). Receiver operating characteristic (ROC) curve and logistic regression analyses were performed to determine the differentiation capacity.

Results

The ADC value, nADC value, and the degree of ITSS in SFT/HPC were significantly higher than those in low-grade and high-grade meningiomas (all p < 0.05). The threshold value of > 1.15 for nADC provided 75.00% sensitivity and 60.42% specificity for differentiating SFT/HPC from meningioma. Compared with nADC, the degree of ITSS had a moderate sensitivity (62.50%) and a higher specificity (85.42%) using the threshold value of > 1.00. Furthermore, combining DWI and SWI can achieve a relatively high differentiation capacity with a sensitivity of 81.25% and specificity of 78.12%.

Conclusions

The nADC ratios and ITSS are useful for differentiating SFT/HPC from meningioma. Combining ITSS and nADC value appears to be a promising option for differential diagnosis.

Keywords

Intracranial solitary fibrous tumor/hemangiopericytoma Meningioma Diffusion-weighted imaging Susceptibility-weighted imaging 

Notes

Funding information

This work was funded by the Leading Project of the Department of Science and Technology of Fujian Province (No. 2016Y0042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Ratneswaren T, Hogg FRA, Gallagher MJ, Ashkan K (2018) Surveillance for metastatic hemangiopericytoma-solitary fibrous tumors-systematic literature review on incidence, predictors and diagnosis of extra-cranial disease. J Neuro-Oncol 138(3):447–467.  https://doi.org/10.1007/s11060-018-2836-2 CrossRefGoogle Scholar
  3. 3.
    Kinslow CJ, Bruce SS, Rae AI, Sheth SA, McKhann GM, Sisti MB, Bruce JN, Sonabend AM, Wang TJC (2018) Solitary-fibrous tumor/hemangiopericytoma of the central nervous system: a population-based study. J Neuro-Oncol 138(1):173–182.  https://doi.org/10.1007/s11060-018-2787-7 CrossRefGoogle Scholar
  4. 4.
    Longstreth W, Dennis L, McGuire V, Drangsholt M, Koepsell T (1993) Epidemiology of intracranial meningioma. Cancer 72(3):639–648CrossRefGoogle Scholar
  5. 5.
    Meng Y, Chaohu W, Yi L, Jun P, Songtao Q (2015) Preoperative radiologic characters to predict hemangiopericytoma from angiomatous meningioma. Clin Neurol Neurosurg 138:78–82.  https://doi.org/10.1016/j.clineuro.2015.08.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Smith A, Horkanyne-Szakaly I, Schroeder J, Rushing E (2014) From the radiologic pathology archives: mass lesions of the dura: beyond meningioma-radiologic-pathologic correlation. Radiographics 34(2):295–312CrossRefGoogle Scholar
  7. 7.
    Sung KS, Moon JH, Kim EH, Kang SG, Kim SH, Suh CO, Kim SH, Lee KS, Chang WS, Chang JH (2018) Solitary fibrous tumor/hemangiopericytoma: treatment results based on the 2016 WHO classification. J Neurosurg:1–8.  https://doi.org/10.3171/2017.9.jns171057
  8. 8.
    Wang N, Osswald M (2018) Meningiomas: Overview and New Directions in Therapy. Semin Neurol 38(1):112–120.  https://doi.org/10.1055/s-0038-1636502 CrossRefPubMedGoogle Scholar
  9. 9.
    Rutkowski MJ, Jian BJ, Bloch O, Chen C, Sughrue ME, Tihan T, Barani IJ, Berger MS, McDermott MW, Parsa AT (2012) Intracranial hemangiopericytoma: clinical experience and treatment considerations in a modern series of 40 adult patients. Cancer 118(6):1628–1636.  https://doi.org/10.1002/cncr.26411 CrossRefPubMedGoogle Scholar
  10. 10.
    Svolos P, Tsolaki E, Kapsalaki E, Theodorou K, Fountas K, Fezoulidis I, Tsougos I (2013) Investigating brain tumor differentiation with diffusion and perfusion metrics at 3 T MRI using pattern recognition techniques. Magn Reson Imaging 31(9):1567–1577CrossRefGoogle Scholar
  11. 11.
    Robinson R, Bhuta S (2011) Susceptibility-weighted imaging of the brain: current utility and potential applications. J Neuroimaging 21(4):e189–e204CrossRefGoogle Scholar
  12. 12.
    Brandão L, Castillo M (2016) Adult brain tumors: clinical applications of magnetic resonance spectroscopy. Magn Reson Imaging Clin N Am 24(4):781–809.  https://doi.org/10.1016/j.mric.2016.07.005 CrossRefPubMedGoogle Scholar
  13. 13.
    He W, Xiao X, Li X, Guo Y, Guo L, Liu X, Xu Y, Zhou J, Wu Y (2019) Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. Eur J Radiol 112:186–191.  https://doi.org/10.1016/j.ejrad.2019.01.023 CrossRefPubMedGoogle Scholar
  14. 14.
    El-Ali AM, Agarwal V, Thomas A, Hamilton RL, Filippi CG (2019) Clinical metric for differentiating intracranial hemangiopericytomas from meningiomas using diffusion weighted MRI. Clin Imaging 54:1–5.  https://doi.org/10.1016/j.clinimag.2018.10.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Kanazawa T, Minami Y, Jinzaki M, Toda M, Yoshida K, Sasaki H (2018) Preoperative prediction of solitary fibrous tumor/hemangiopericytoma and angiomatous meningioma using magnetic resonance imaging texture analysis. World Neurosurg 120:e1208–e1216.  https://doi.org/10.1016/j.wneu.2018.09.044 CrossRefPubMedGoogle Scholar
  16. 16.
    Liu G, Chen ZY, Ma L, Lou X, Li SJ, Wang YL (2013) Intracranial hemangiopericytoma: MR imaging findings and diagnostic usefulness of minimum ADC values. J Magn Reson Imaging 38(5):1146–1151.  https://doi.org/10.1002/jmri.24075 CrossRefPubMedGoogle Scholar
  17. 17.
    Su CQ, Lu SS, Han QY, Zhou MD, Hong XN (2019) Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading. Acta Radiol 60(6):777–787.  https://doi.org/10.1177/0284185118801127 CrossRefPubMedGoogle Scholar
  18. 18.
    Kim HS, Jahng GH, Ryu CW, Kim SY (2009) Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 30(8):1574–1579.  https://doi.org/10.3174/ajnr.A1635 CrossRefPubMedGoogle Scholar
  19. 19.
    Saini J, Gupta PK, Sahoo P, Singh A, Patir R, Ahlawat S, Beniwal M, Thennarasu K, Santosh V, Gupta RK (2018) Differentiation of grade II/III and grade IV glioma by combining “T1 contrast-enhanced brain perfusion imaging” and susceptibility-weighted quantitative imaging. Neuroradiology 60(1):43–50.  https://doi.org/10.1007/s00234-017-1942-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Park MJ, Kim HS, Jahng GH, Ryu CW, Park SM, Kim SY (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30(7):1402–1408.  https://doi.org/10.3174/ajnr.A1593 CrossRefPubMedGoogle Scholar
  21. 21.
    Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, Takaba J, Tominaga A, Hanaya R, Yoshioka H, Hama S, Ito Y, Kajiwara Y, Yahara K, Saito T, Thohar M (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235(3):985–991CrossRefGoogle Scholar
  22. 22.
    Shankar J, Hodgson L, Sinha N (2019) Diffusion weighted imaging may help differentiate intracranial hemangiopericytoma from meningioma. J Neuroradiol 46(4):263–267.  https://doi.org/10.1016/j.neurad.2018.11.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Popoff NA, Malinin TI, Rosomoff HL (2015) Fine structure of intracranial hemangiopericytoma and angiomatous meningioma. Cancer 34(4):1187–1197CrossRefGoogle Scholar
  24. 24.
    Jaskólski D, Papierz T, Liberski P, Sikorska B (2012) Ultrastructure of meningiomas: autophagy is involved in the pathogenesis of “intranuclear vacuoles”. Folia Neuropathol 50(2):187–193PubMedGoogle Scholar
  25. 25.
    Yin B, Liu L, Zhang BY, Li YX, Li Y, Geng DY (2012) Correlating apparent diffusion coefficients with histopathologic findings on meningiomas. Eur J Radiol 81(12):4050–4056.  https://doi.org/10.1016/j.ejrad.2012.06.002 CrossRefPubMedGoogle Scholar
  26. 26.
    Nagar VA, Ye JR, Ng WH, Chan YH, Hui F, Lee CK, Lim CCT (2008) Diffusion-Weighted MR Imaging: Diagnosing Atypical or Malignant Meningiomas and Detecting Tumor Dedifferentiation. Am J Neuroradiol 29(6):1147–1152.  https://doi.org/10.3174/ajnr.A0996 CrossRefPubMedGoogle Scholar
  27. 27.
    Filippi C, Edgar M, Uluğ A, Prowda J, Heier L, Zimmerman R (2001) Appearance of meningiomas on diffusion-weighted images correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol 22(1):65–72PubMedGoogle Scholar
  28. 28.
    Schmeel FC (2018) Variability in quantitative diffusion-weighted MR imaging (DWI) across different scanners and imaging sites: is there a potential consensus that can help reducing the limits of expected bias? Eur Radiol 29(5):2243–2245.  https://doi.org/10.1007/s00330-018-5866-4 CrossRefPubMedGoogle Scholar
  29. 29.
    Pinker K, Noebauer-Huhmann IM, Stavrou I, Hoeftberger R, Szomolanyi P, Karanikas G, Weber M, Stadlbauer A, Knosp E, Friedrich K, Trattnig S (2007) High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3 T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 28(7):1280–1286.  https://doi.org/10.3174/ajnr.A0540 CrossRefPubMedGoogle Scholar
  30. 30.
    Di Ieva A, Le Reste PJ, Carsin-Nicol B, Ferre JC, Cusimano MD (2016) Diagnostic Value of Fractal Analysis for the Differentiation of Brain Tumors Using 3-Tesla Magnetic Resonance Susceptibility-Weighted Imaging. Neurosurgery 79(6):839–846.  https://doi.org/10.1227/NEU.0000000000001308 CrossRefPubMedGoogle Scholar
  31. 31.
    Yu Y, Zhang H, Xiao Z, She D, Xing Z, Yang X, Cao D (2018) Diffusion-weighted MRI combined with susceptibility-weighted MRI: added diagnostic value for four common lateral ventricular tumors. Acta Radiol 59(8):980–987.  https://doi.org/10.1177/0284185117738562 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang S, Chiang GC, Knapp JM, Zecca CM, He D, Ramakrishna R, Magge RS, Pisapia DJ, Fine HA, Tsiouris AJ, Zhao Y, Heier LA, Wang Y, Kovanlikaya I (2019) Grading meningiomas utilizing multiparametric MRI with inclusion of susceptibility weighted imaging and quantitative susceptibility mapping. J Neuroradiol.  https://doi.org/10.1016/j.neurad.2019.05.002
  33. 33.
    Wang S, Kim S, Zhang Y, Wang L, Lee E, Syre P, Poptani H, Melhem E, Lee J (2012) Determination of grade and subtype of meningiomas by using histogram analysis of diffusion-tensor imaging metrics. Radiology 262(2):584–592.  https://doi.org/10.1148/radiol.11110576 CrossRefPubMedGoogle Scholar
  34. 34.
    Maeda M, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, Ishii Y, Kubota T (1994) Vascularity of meningiomas and neuromas: assessment with dynamic susceptibility-contrast MR imaging. AJR Am J Roentgenol 163(1):181–186CrossRefGoogle Scholar
  35. 35.
    Eastwood J, Provenzale J (2003) Cerebral blood flow, blood volume, and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology 45(6):373–376CrossRefGoogle Scholar
  36. 36.
    Ren G, Chen S, Wang Y, Zhu R, Geng D, Feng X (2010) Quantitative evaluation of benign meningioma and hemangiopericytoma with peritumoral brain edema by 64-slice CT perfusion imaging. Chin Med J 123(15):2038–2044PubMedGoogle Scholar
  37. 37.
    Arai N, Mizutani K, Takahashi S, Morimoto Y, Akiyama T, Horiguchi T, Mami H, Yoshida K (2018) Preoperative assessment of pathologic subtypes of meningioma and solitary fibrous tumor/hemangiopericytoma using dynamic computed tomography: a clinical research study. World Neurosurg 115:e676–e680.  https://doi.org/10.1016/j.wneu.2018.04.132 CrossRefPubMedGoogle Scholar
  38. 38.
    Righi V, Tugnoli V, Mucci A, Bacci A, Bonora S, Schenetti L (2012) MRS study of meningeal hemangiopericytoma and edema: a comparison with meningothelial meningioma. Oncol Rep 28(4):1461–1467.  https://doi.org/10.3892/or.2012.1919 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouPeople’s Republic of China

Personalised recommendations