Advertisement

Evaluation of white matter microstructure in patients with Parkinson’s disease using microscopic fractional anisotropy

  • Yutaka Ikenouchi
  • Koji KamagataEmail author
  • Christina Andica
  • Taku Hatano
  • Takashi Ogawa
  • Haruka Takeshige-Amano
  • Kouhei Kamiya
  • Akihiko Wada
  • Michimasa Suzuki
  • Shohei Fujita
  • Akifumi Hagiwara
  • Ryusuke Irie
  • Masaaki Hori
  • Genko Oyama
  • Yashushi Shimo
  • Atsushi Umemura
  • Nobutaka Hattori
  • Shigeki Aoki
Diagnostic Neuroradiology

Abstract

Purpose

Micro fractional anisotropy (μFA) is more accurate than conventional fractional anisotropy (FA) for assessing microscopic tissue properties and can overcome limitations related to crossing white matter fibres. We compared μFA and FA for evaluating white matter changes in patients with Parkinson’s disease (PD).

Methods

We compared FA and μFA measures between 25 patients with PD and 25 age- and gender-matched healthy controls using tract-based spatial statistics (TBSS) analysis. We also examined potential correlations between changes, revealed by conventional FA or μFA, and disease duration or Unified Parkinson’s Disease Rating Scale (UPDRS)-III scores.

Results

Compared with healthy controls, patients with PD had significantly reduced μFA values, mainly in the anterior corona radiata (ACR). In the PD group, μFA values (primarily those from the ACR) were significantly negatively correlated with UPDRS-III motor scores. No significant changes or correlations with disease duration or UPDRS-III scores with tissue properties were detected using conventional FA.

Conclusion

μFA can evaluate microstructural changes that occur during white matter degeneration in patients with PD and may overcome a key limitation of FA.

Keywords

Parkinson’s disease Diffusion tensor imaging Microscopic fractional anisotropy Anterior corona radiata 

Notes

Acknowledgements

We thank Yuki Takenaka and Mana Kuramochi for their research assistance.

Funding information

This work was supported by the Brain/MINDS Beyond program from the Japan Agency for Medical Research and Development (AMED) under Grant Number JP19dm0307024; JSPS KAKENHI (JP16K19854); a High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT); and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in reports involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants before evaluation.

References

  1. 1.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301CrossRefGoogle Scholar
  2. 2.
    Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18(7):435–450.  https://doi.org/10.1038/nrn.2017.62 CrossRefPubMedGoogle Scholar
  3. 3.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211CrossRefGoogle Scholar
  4. 4.
    Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K (2006) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 21(12):2042–2051.  https://doi.org/10.1002/mds.21065 CrossRefPubMedGoogle Scholar
  5. 5.
    Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T (2012) Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 22(1):67–78.  https://doi.org/10.1111/j.1750-3639.2011.00509.x CrossRefPubMedGoogle Scholar
  6. 6.
    Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, Sato R, Sakai K, Mizusawa H (2012) Cognitive status correlates with white matter alteration in Parkinson’s disease. Hum Brain Mapp 33(3):727–739.  https://doi.org/10.1002/hbm.21245 CrossRefPubMedGoogle Scholar
  7. 7.
    Kamagata K, Motoi Y, Abe O, Shimoji K, Hori M, Nakanishi A, Sano T, Kuwatsuru R, Aoki S, Hattori N (2012) White matter alteration of the cingulum in Parkinson disease with and without dementia: evaluation by diffusion tensor tract-specific analysis. AJNR Am J Neuroradiol 33(5):890–895.  https://doi.org/10.3174/ajnr.A2860 CrossRefPubMedGoogle Scholar
  8. 8.
    Kamagata K, Motoi Y, Tomiyama H, Abe O, Ito K, Shimoji K, Suzuki M, Hori M, Nakanishi A, Sano T, Kuwatsuru R, Sasai K, Aoki S, Hattori N (2013) Relationship between cognitive impairment and white-matter alteration in Parkinson’s disease with dementia: tract-based spatial statistics and tract-specific analysis. Eur Radiol 23(7):1946–1955.  https://doi.org/10.1007/s00330-013-2775-4 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Karagulle Kendi AT, Lehericy S, Luciana M, Ugurbil K, Tuite P (2008) Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol 29(3):501–505.  https://doi.org/10.3174/ajnr.A0850 CrossRefPubMedGoogle Scholar
  10. 10.
    Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61.  https://doi.org/10.1007/s12031-007-0029-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4(3):316–329.  https://doi.org/10.1016/j.nurt.2007.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kaden E, Kruggel F, Alexander DC (2016) Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn Reson Med 75(4):1752–1763.  https://doi.org/10.1002/mrm.25734 CrossRefPubMedGoogle Scholar
  13. 13.
    Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601.  https://doi.org/10.1002/mds.26424 CrossRefPubMedGoogle Scholar
  14. 14.
    Andersson JL, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078.  https://doi.org/10.1016/j.neuroimage.2015.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254CrossRefGoogle Scholar
  16. 16.
    Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790.  https://doi.org/10.1016/j.neuroimage.2011.09.015 CrossRefPubMedGoogle Scholar
  17. 17.
    Mancall EL, Brock DG, Gray H (2011) Gray’s clinical neuroanatomy: the anatomic basis for clinical neuroscience. Elsevier/SaundersGoogle Scholar
  18. 18.
    Braak H, Del Tredici K (2008) Invited Article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925.  https://doi.org/10.1212/01.wnl.0000312279.49272.9f CrossRefPubMedGoogle Scholar
  19. 19.
    Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, Burn DJ, O’Brien JT (2016) Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson’s disease? Mov Disord 31(1):103–110.  https://doi.org/10.1002/mds.26312 CrossRefPubMedGoogle Scholar
  20. 20.
    Shemesh N (2018) Axon and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord. Front Phys 6(49).  https://doi.org/10.3389/fphy.2018.00049
  21. 21.
    Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system: a synopsis and atlas. Spr Sci Business Media.  https://doi.org/10.1007/978-3-540-34686-9 CrossRefGoogle Scholar
  22. 22.
    Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K (2018) Functional connectivity of the corticobasal ganglia-thalamocortical network in Parkinson disease: a systematic review and meta-analysis with cross-validation. Radiology 287(3):973–982.  https://doi.org/10.1148/radiol.2018172183 CrossRefPubMedGoogle Scholar
  23. 23.
    Kamagata K, Zalesky A, Hatano T, Di Biase MA, El Samad O, Saiki S, Shimoji K, Kumamaru KK, Kamiya K, Hori M, Hattori N, Aoki S, Pantelis C (2018) Connectome analysis with diffusion MRI in idiopathic Parkinson’s disease: evaluation using multi-shell, multi-tissue, constrained spherical deconvolution. Neuroimage Clin 17:518–529.  https://doi.org/10.1016/j.nicl.2017.11.007 CrossRefPubMedGoogle Scholar
  24. 24.
    Long Z, Xu Q, Miao HH, Yu Y, Ding MP, Chen H, Liu ZR, Liao W (2017) Thalamocortical dysconnectivity in paroxysmal kinesigenic dyskinesia: combining functional magnetic resonance imaging and diffusion tensor imaging. Mov Disord 32(4):592–600.  https://doi.org/10.1002/mds.26905 CrossRefPubMedGoogle Scholar
  25. 25.
    Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8(12):1128–1139.  https://doi.org/10.1016/S1474-4422(09)70293-5 CrossRefPubMedGoogle Scholar
  26. 26.
    Esmaeeli S, Murphy K, Swords GM, Ibrahim BA, Brown JW, Llano DA (2019) Visual hallucinations, thalamocortical physiology and Lewy body disease: a review. Neurosci Biobehav Rev 103:337–351.  https://doi.org/10.1016/j.neubiorev.2019.06.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Onofrj M, Espay AJ, Bonanni L, Delli Pizzi S, Sensi SL (2019) Hallucinations, somatic-functional disorders of PD-DLB as expressions of thalamic dysfunction. Mov Disord 34(8):1100–1111.  https://doi.org/10.1002/mds.27781 CrossRefPubMedGoogle Scholar
  28. 28.
    Delli Pizzi S, Franciotti R, Taylor JP, Thomas A, Tartaro A, Onofrj M, Bonanni L (2015) Thalamic involvement in fluctuating cognition in dementia with Lewy bodies: Mag Res Evidences. Cereb Cortex 25(10):3682–3689.  https://doi.org/10.1093/cercor/bhu220 CrossRefPubMedGoogle Scholar
  29. 29.
    Delli Pizzi S, Maruotti V, Taylor JP, Franciotti R, Caulo M, Tartaro A, Thomas A, Onofrj M, Bonanni L (2014) Relevance of subcortical visual pathways disruption to visual symptoms in dementia with Lewy bodies. Cortex 59:12–21.  https://doi.org/10.1016/j.cortex.2014.07.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Delli Pizzi S, Franciotti R, Taylor JP, Esposito R, Tartaro A, Thomas A, Onofrj M, Bonanni L (2015) Structural connectivity is differently altered in dementia with Lewy body and Alzheimer’s disease. Front Aging Neurosci 7:208.  https://doi.org/10.3389/fnagi.2015.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Worker A, Blain C, Jarosz J, Chaudhuri KR, Barker GJ, Williams SC, Brown RG, Leigh PN, Dell'Acqua F, Simmons A (2014) Diffusion tensor imaging of Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study. PLoS One 9(11):e112638.  https://doi.org/10.1371/journal.pone.0112638 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Taylor KI, Sambataro F, Boess F, Bertolino A, Dukart J (2018) Progressive decline in gray and white matter integrity in de novo Parkinson’s disease: an analysis of longitudinal Parkinson progression markers initiative diffusion tensor imaging data. Front Aging Neurosci 10:318.  https://doi.org/10.3389/fnagi.2018.00318 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mori S, Wakana S, Van Zijl PCM (2005) MRI atlas of human white matter. 1st edn. Elsevier, AmsterdamGoogle Scholar
  34. 34.
    Nilsson M, Szczepankiewicz F, Topgaard D Quantification of microscopic anisotropy with diffusion MRI. Front Neurosci.  https://doi.org/10.3389/conf.fnins.2015.88.00004
  35. 35.
    Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45(5):770–780CrossRefGoogle Scholar
  36. 36.
    Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H (2012) The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed 25(5):795–805.  https://doi.org/10.1002/nbm.1795 CrossRefPubMedGoogle Scholar
  37. 37.
    Szczepankiewicz F, Lasic S, van Westen D, Sundgren PC, Englund E, Westin CF, Stahlberg F, Latt J, Topgaard D, Nilsson M (2015) Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. Neuroimage 104:241–252.  https://doi.org/10.1016/j.neuroimage.2014.09.057 CrossRefPubMedGoogle Scholar
  38. 38.
    Lawrenz M, Brassen S, Finsterbusch J (2016) Microscopic diffusion anisotropy in the human brain: age-related changes. Neuroimage 141:313–325.  https://doi.org/10.1016/j.neuroimage.2016.07.031 CrossRefPubMedGoogle Scholar
  39. 39.
    Lawrenz M, Brassen S, Finsterbusch J (2015) Microscopic diffusion anisotropy in the human brain: reproducibility, normal values, and comparison with the fractional anisotropy. Neuroimage 109:283–297.  https://doi.org/10.1016/j.neuroimage.2015.01.025 CrossRefPubMedGoogle Scholar
  40. 40.
    Muslimovic D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65(8):1239–1245.  https://doi.org/10.1212/01.wnl.0000180516.69442.95 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440.  https://doi.org/10.1002/mrm.20508 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016.  https://doi.org/10.1016/j.neuroimage.2012.03.072 CrossRefPubMedGoogle Scholar
  43. 43.
    Shemesh N, Jespersen SN, Alexander DC, Cohen Y, Drobnjak I, Dyrby TB, Finsterbusch J, Koch MA, Kuder T, Laun F, Lawrenz M, Lundell H, Mitra PP, Nilsson M, Ozarslan E, Topgaard D, Westin CF (2016) Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn Reson Med 75(1):82–87.  https://doi.org/10.1002/mrm.25901 CrossRefPubMedGoogle Scholar
  44. 44.
    Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC (2016) Multi-compartment microscopic diffusion imaging. Neuroimage 139:346–359.  https://doi.org/10.1016/j.neuroimage.2016.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Henriques RN, Jespersen SN, Shemesh N (2019) Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI. Magn Reson Med 81(5):3245–3261.  https://doi.org/10.1002/mrm.27606 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ianus A, Jespersen SN, Serradas Duarte T, Alexander DC, Drobnjak I, Shemesh N (2018) Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain. Neuroimage 183:934–949.  https://doi.org/10.1016/j.neuroimage.2018.08.034 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yutaka Ikenouchi
    • 1
  • Koji Kamagata
    • 1
    Email author
  • Christina Andica
    • 1
  • Taku Hatano
    • 2
  • Takashi Ogawa
    • 2
  • Haruka Takeshige-Amano
    • 2
  • Kouhei Kamiya
    • 3
  • Akihiko Wada
    • 1
  • Michimasa Suzuki
    • 1
  • Shohei Fujita
    • 1
  • Akifumi Hagiwara
    • 1
  • Ryusuke Irie
    • 3
  • Masaaki Hori
    • 1
  • Genko Oyama
    • 2
  • Yashushi Shimo
    • 4
  • Atsushi Umemura
    • 5
  • Nobutaka Hattori
    • 2
  • Shigeki Aoki
    • 1
  1. 1.Department of RadiologyJuntendo University Graduate School of MedicineTokyoJapan
  2. 2.Department of NeurologyJuntendo University School of MedicineTokyoJapan
  3. 3.Department of RadiologyThe University of Tokyo Graduate School of MedicineTokyoJapan
  4. 4.Department of NeurologyJuntendo University Nerima HospitalTokyoJapan
  5. 5.Department of NeurosurgeryJuntendo University School of MedicineTokyoJapan

Personalised recommendations