Advertisement

Neuroradiology

, Volume 61, Issue 6, pp 685–694 | Cite as

Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study

  • Jing-Li Li
  • Heng Jiang
  • Xiao-Dong Zhang
  • Li-Xiang Huang
  • Shuang-Shuang Xie
  • Li Zhang
  • Yue ChengEmail author
  • Wen ShenEmail author
Functional Neuroradiology
  • 78 Downloads

Abstract

Purpose

To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance.

Methods

We enrolled 116 cirrhosis patients, divided into non-HE (n = 61) and MHE (n = 55), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE.

Results

MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%).

Conclusions

Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis.

Keywords

Hepatic encephalopathy Brain microstructure Diffusion kurtosis imaging Voxel-based analysis 

Abbreviations

AD

Axial diffusivity

AK

Axial kurtosis

AUC

Area under a curve

DKI

Diffusion kurtosis imaging

FA

Fractional anisotropy

HE

Hepatic encephalopathy

MD

Mean diffusivity

MHE

Minimal HE

MK

Mean kurtosis

OHE

Overt HE

RD

Radial diffusivity

RK

Radial kurtosis

ROC

Receiver operating characteristic

VBA

Voxel-based analysis

Notes

Funding

This study was funded by the National Natural Science Foundation of China (No. 81601482 to YC and No. 81701679 to XDZ).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in our studies involving human participants were in accordance with the ethical standards of the medical research committee and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants recruited in our study.

Supplementary material

234_2019_2201_MOESM1_ESM.pdf (225 kb)
ESM 1 (PDF 224 kb)

References

  1. 1.
    Wijdicks EF (2016) Hepatic encephalopathy. N Engl J Med 375(17):1660–1670.  https://doi.org/10.1056/NEJMra1600561 CrossRefGoogle Scholar
  2. 2.
    Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858.  https://doi.org/10.1038/nrn3587 CrossRefGoogle Scholar
  3. 3.
    Prakash R, Mullen KD (2010) Mechanisms, diagnosis and management of hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 7(9):515–525.  https://doi.org/10.1038/nrgastro.2010.116 CrossRefGoogle Scholar
  4. 4.
    Goldbecker A, Weissenborn K, Hamidi Shahrezaei G, Afshar K, Rumke S, Barg-Hock H, Strassburg CP, Hecker H, Tryc AB (2013) Comparison of the most favoured methods for the diagnosis of hepatic encephalopathy in liver transplantation candidates. Gut 62(10):1497–1504.  https://doi.org/10.1136/gutjnl-2012-303262 CrossRefGoogle Scholar
  5. 5.
    Zhang LJ, Zheng G, Zhang L, Zhong J, Wu S, Qi R, Li Q, Wang L, Lu G (2012) Altered brain functional connectivity in patients with cirrhosis and minimal hepatic encephalopathy: a functional MR imaging study. Radiology 265(2):528–536.  https://doi.org/10.1148/radiol.12120185 CrossRefGoogle Scholar
  6. 6.
    Qi R, Zhang L, Wu S, Zhong J, Zhang Z, Zhong Y, Ni L, Zhang Z, Li K, Jiao Q, Wu X, Fan X, Liu Y, Lu G (2012) Altered resting-state brain activity at functional MR imaging during the progression of hepatic encephalopathy. Radiology 264(1):187–195.  https://doi.org/10.1148/radiol.12111429 CrossRefGoogle Scholar
  7. 7.
    Chen HJ, Jiao Y, Zhu XQ, Zhang HY, Liu JC, Wen S, Teng GJ (2013) Brain dysfunction primarily related to previous overt hepatic encephalopathy compared with minimal hepatic encephalopathy: resting-state functional MR imaging demonstration. Radiology 266(1):261–270.  https://doi.org/10.1148/radiol.12120026 CrossRefGoogle Scholar
  8. 8.
    Poveda MJ, Bernabeu A, Concepcion L, Roa E, de Madaria E, Zapater P, Perez-Mateo M, Jover R (2010) Brain edema dynamics in patients with overt hepatic encephalopathy: a magnetic resonance imaging study. Neuroimage 52(2):481–487.  https://doi.org/10.1016/j.neuroimage.2010.04.260 CrossRefGoogle Scholar
  9. 9.
    Qi R, Zhang LJ, Zhong J, Zhu T, Zhang Z, Xu C, Zheng G, Lu GM (2013) Grey and white matter abnormalities in minimal hepatic encephalopathy: a study combining voxel-based morphometry and tract-based spatial statistics. Eur Radiol 23(12):3370–3378.  https://doi.org/10.1007/s00330-013-2963-2 CrossRefGoogle Scholar
  10. 10.
    Chen HJ, Chen R, Yang M, Teng GJ, Herskovits EH (2015) Identification of minimal hepatic encephalopathy in patients with cirrhosis based on white matter imaging and Bayesian data mining. Am J Neuroradiol 36(3):481–487.  https://doi.org/10.3174/ajnr.A4146 CrossRefGoogle Scholar
  11. 11.
    Chen HJ, Shi HB, Jiang LF, Li L, Chen R (2018) Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients. Eur Radiol 28(1):85–95.  https://doi.org/10.1007/s00330-017-4887-8 CrossRefGoogle Scholar
  12. 12.
    Wu X, Lv XF, Zhang YL, Wu HW, Cai PQ, Qiu YW, Zhang XL, Jiang GH (2015) Cortical signature of patients with HBV-related cirrhosis without overt hepatic encephalopathy: a morphometric analysis. Front Neuroanat 9:82.  https://doi.org/10.3389/fnana.2015.00082 CrossRefGoogle Scholar
  13. 13.
    Lv XF, Liu K, Qiu YW, Cai PQ, Li J, Jiang GH, Deng YJ, Zhang XL, Wu PH, Xie CM, Wen G (2015) Anomalous gray matter structural networks in patients with hepatitis B virus-related cirrhosis without overt hepatic encephalopathy. PLoS One 10(3):e0119339.  https://doi.org/10.1371/journal.pone.0119339 CrossRefGoogle Scholar
  14. 14.
    Kumar R, Gupta RK, Elderkin-Thompson V, Huda A, Sayre J, Kirsch C, Guze B, Han S, Thomas MA (2008) Voxel-based diffusion tensor magnetic resonance imaging evaluation of low-grade hepatic encephalopathy. J Magn Reson Imaging 27(5):1061–1068.  https://doi.org/10.1002/jmri.21342 CrossRefGoogle Scholar
  15. 15.
    Guevara M, Baccaro ME, Gomez-Anson B, Frisoni G, Testa C, Torre A, Luis Molinuevo J, Rami L, Pereira G, Urtasun Sotil E, Cordoba J, Arroyo V, Gines P (2011) Cerebral magnetic resonance imaging reveals marked abnormalities of brain tissue density in patients with cirrhosis without overt hepatic encephalopathy. J Hepatol 55(3):564–573.  https://doi.org/10.1016/j.jhep.2010.12.008 CrossRefGoogle Scholar
  16. 16.
    Marrale M, Collura G, Brai M, Toschi N, Midiri F, La Tona G, Lo Casto A, Gagliardo C (2016) Physics, techniques and review of neuroradiological applications of diffusion kurtosis imaging (DKI). Clin Neuroradiol 26(4):391–403.  https://doi.org/10.1007/s00062-015-0469-9 CrossRefGoogle Scholar
  17. 17.
    Zhu J, Zhuo C, Qin W, Wang D, Ma X, Zhou Y, Yu C (2015) Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. Neuroimage Clin 7:170–176.  https://doi.org/10.1016/j.nicl.2014.12.008 CrossRefGoogle Scholar
  18. 18.
    Chen HJ, Liu PF, Chen QF, Shi HB (2017) Brain microstructural abnormalities in patients with cirrhosis without overt hepatic encephalopathy: a voxel-based diffusion kurtosis imaging study. AJR Am J Roentgenol 209(5):1128–1135.  https://doi.org/10.2214/AJR.17.17827 CrossRefGoogle Scholar
  19. 19.
    Cheng Y, Huang LX, Zhang L, Ma M, Xie SS, Ji Q, Zhang XD, Zhang GY, Zhang XN, Ni HY, Shen W (2017) Longitudinal intrinsic brain activity changes in cirrhotic patients before and one month after liver transplantation. Korean J Radiol 18(2):370–377.  https://doi.org/10.3348/kjr.2017.18.2.370 CrossRefGoogle Scholar
  20. 20.
    Zhang G, Cheng Y, Shen W, Liu B, Huang L, Xie S (2017) The short-term effect of liver transplantation on the low-frequency fluctuation of brain activity in cirrhotic patients with and without overt hepatic encephalopathy. Brain Imaging Behav 11(6):1849–1861.  https://doi.org/10.1007/s11682-016-9659-6 CrossRefGoogle Scholar
  21. 21.
    Xie Y, Zhang Y, Qin W, Lu S, Ni C, Zhang Q (2017) White matter microstructural abnormalities in type 2 diabetes mellitus: a diffusional kurtosis imaging analysis. Am J Neuroradiol 38(3):617–625.  https://doi.org/10.3174/ajnr.A5042 CrossRefGoogle Scholar
  22. 22.
    Xie Y, Zhang Y, Qin W, Lu S, Ni C, Zhang Q (2017) White Matter Microstructural Abnormalities in Type 2 Diabetes Mellitus: A Diffusional Kurtosis Imaging Analysis. AJNR American journal of neuroradiology 38 (3):617–625.  https://doi.org/10.3174/ajnr.A504
  23. 23.
    Kamagata K, Zalesky A, Hatano T, Ueda R, Di Biase MA, Okuzumi A, Shimoji K, Hori M, Caeyenberghs K, Pantelis C, Hattori N, Aoki S (2017) Gray matter abnormalities in idiopathic Parkinson’s disease: evaluation by diffusional kurtosis imaging and neurite orientation dispersion and density imaging. Hum Brain Mapp 38(7):3704–3722.  https://doi.org/10.1002/hbm.23628 Google Scholar
  24. 24.
    Zheng G, Zhang LJ, Wang Z, Qi RF, Shi DH, Wang L, Fan XX, Lu GM (2012) Changes in cerebral blood flow after transjugular intrahepatic portosystemic shunt can help predict the development of hepatic encephalopathy: an arterial spin labeling MR study. Eur J Radiol 81(12):3851–3856.  https://doi.org/10.1016/j.ejrad.2012.07.003 CrossRefGoogle Scholar
  25. 25.
    Butterworth RF (2011) Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 53(4):1372–1376.  https://doi.org/10.1002/hep.24228 CrossRefGoogle Scholar
  26. 26.
    Chen HJ, Lin HL, Chen QF, Liu PF (2017) Altered dynamic functional connectivity in the default mode network in patients with cirrhosis and minimal hepatic encephalopathy. Neuroradiology 59(9):905–914.  https://doi.org/10.1007/s00234-017-1881-4 CrossRefGoogle Scholar
  27. 27.
    Chen HJ, Wang Y, Yang M, Zhu XQ, Teng GJ (2014) Aberrant interhemispheric functional coordination in patients with HBV-related cirrhosis and minimal hepatic encephalopathy. Metab Brain Dis 29(3):617–623.  https://doi.org/10.1007/s11011-014-9505-8 CrossRefGoogle Scholar
  28. 28.
    Zhang LJ, Qi RF, Wu SY, Zhong JH, Zhong Y, Zhang ZQ, Zhang ZJ, Lu GM (2012) Brain default-mode network abnormalities in hepatic encephalopathy: a resting-state functional MRI study. Hum Brain Mapp 33(6):1384–1392.  https://doi.org/10.1002/hbm.21295 CrossRefGoogle Scholar
  29. 29.
    Chen HJ, Jiang LF, Sun T, Liu J, Chen QF, Shi HB (2015) Resting-state functional connectivity abnormalities correlate with psychometric hepatic encephalopathy score in cirrhosis. Eur J Radiol 84(11):2287–2295.  https://doi.org/10.1016/j.ejrad.2015.08.005 CrossRefGoogle Scholar
  30. 30.
    Qi RF, Zhang LJ, Zhong JH, Zhang ZQ, Ni L, Zheng G, Lu GM (2013) Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy. Eur J Radiol 82(5):850–856.  https://doi.org/10.1016/j.ejrad.2012.12.016 CrossRefGoogle Scholar
  31. 31.
    Montoliu C, Urios A, Forn C, Garcia-Panach J, Avila C, Gimenez-Garzo C, Wassel A, Serra MA, Giner-Duran R, Gonzalez O, Aliaga R, Belloch V, Felipo V (2014) Reduced white matter microstructural integrity correlates with cognitive deficits in minimal hepatic encephalopathy. Gut 63(6):1028–U1342.  https://doi.org/10.1136/gutjnl-2013-306175 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing-Li Li
    • 1
  • Heng Jiang
    • 2
  • Xiao-Dong Zhang
    • 1
  • Li-Xiang Huang
    • 1
  • Shuang-Shuang Xie
    • 1
  • Li Zhang
    • 3
  • Yue Cheng
    • 1
    Email author
  • Wen Shen
    • 1
    Email author
  1. 1.Department of RadiologyTianjin First Central HospitalTianjinChina
  2. 2.Department of OncologyWestern Theater Command Air Force Hospital of PLAChengduChina
  3. 3.Department of Transplantation SurgeryTianjin First Central HospitalTianjinChina

Personalised recommendations