Advertisement

Neuroradiology

, Volume 61, Issue 6, pp 711–720 | Cite as

Diagnostic performance of an unenhanced MRI exam for tumor follow-up of the optic pathway gliomas in children

  • Pierre MarsaultEmail author
  • Stéphane Ducassou
  • Fanny Menut
  • Pierre Bessou
  • Marion Havez-Enjolras
  • Jean-François Chateil
Paediatric Neuroradiology

Abstract

Purpose

Contrast-enhanced MRI (MRI + C) is considered as mandatory for brain tumors follow-up, but gadolinium brain depositions in relation with repeated injections have been reported. The aim of our work was to evaluate the diagnostic performance of an unenhanced MRI examination for the follow-up of optic pathway gliomas (OPG) in children.

Methods

Seventeen patients (with/without NF1) were selected from 2001 to 2017, with at least 5 MRI + C brain follow-up examinations. Privacy and data protection rights were addressed by the data protection officer (DPO) and the study was in accordance with the local ethical rules. Twenty-five cases of tumor progression and 25 cases of tumor stability mentioned in the conclusion of radiological reports (defined as gold standard) were isolated. Those exams were anonymized and independently reviewed by two radiologists, who analyzed both quantitative (such as tumor volume variation) and qualitative criteria (such as ventricular dilatation) on unenhanced images. Sensitivity, specificity, positive/negative predictive values (PPV, NPV), and inter/intra-observer agreement were calculated.

Results

The mean age of patients was 5.4 ± 3.4 years and mean follow-up length 6.7 years. The mean number of MRI + C was 13.5 (SD 7.2). The sensitivity of unenhanced MRI for tumor follow-up was 84–88% (95% CI 63.9–97.5). The specificity was 91.3–100% (95% CI 72–100). The PPV was 91.7% for reader 1 and 100% for reader 2. The NVP was 87.5% for reader 1 and 85.2% for reader 2. There was an excellent inter-observer agreement regarding tumor progression: kappa coefficient of 0.87 (p < 0.001). Inter/intra-variability for percentage of tumor volume variation between two exams were good (correlation coefficients of 0.97 and 0.94).

Conclusion

Tumor volume variation is in most cases sufficient to assess OPG progression. Systematic MRI + C could be questionable.

Keywords

Optic pathway glioma MRI Neurofibromatosis type 1 Children 

Notes

Acknowledgments

To Julie Blanchard for her assistance in the preparation of imaging data.

Funding

This study was not supported by any funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

For this type of study, consent is not required.

References

  1. 1.
    Young JR, Orosz I, Franke MA, Kim HJ, Woodworth D, Ellingson BM, Salamon N, Pope WB (2018) Gadolinium deposition in the paediatric brain: T1-weighted hyperintensity within the dentate nucleus following repeated gadolinium-based contrast agent administration. Clin Radiol 73:290–295.  https://doi.org/10.1016/j.crad.2017.11.005 CrossRefPubMedGoogle Scholar
  2. 2.
    Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J’, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefGoogle Scholar
  3. 3.
    Errante Y, Cirimele V, Mallio CA, di Lazzaro V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investig Radiol 49:685–690.  https://doi.org/10.1097/RLI.0000000000000072 CrossRefGoogle Scholar
  4. 4.
    Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer HP, Bendszus M (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791.  https://doi.org/10.1148/radiol.2015150337 CrossRefPubMedGoogle Scholar
  5. 5.
    Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228.  https://doi.org/10.1148/radiol.2016160356 CrossRefPubMedGoogle Scholar
  6. 6.
    Hu HH, Pokorney A, Towbin RB, Miller JH (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598.  https://doi.org/10.1007/s00247-016-3646-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Renz DM, Kümpel S, Böttcher J, Pfeil A, Streitparth F, Waginger M, Reichenbach JR, Teichgräber UK, Mentzel HJ (2018) Comparison of unenhanced T1-weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of gadopentetate dimeglumine versus gadobutrol in a pediatric population. Investig Radiol 53:119–127.  https://doi.org/10.1097/RLI.0000000000000419 CrossRefGoogle Scholar
  8. 8.
    Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276:836–844.  https://doi.org/10.1148/radiol.2015150872 CrossRefPubMedGoogle Scholar
  9. 9.
    Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S (2016) Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26:807–815.  https://doi.org/10.1007/s00330-015-3879-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Bjørnerud A, Vatnehol SAS, Larsson C, Due-Tønnessen P, Hol PK, Groote IR (2017) Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology 285:434–444.  https://doi.org/10.1148/radiol.2017170391 CrossRefPubMedGoogle Scholar
  11. 11.
    McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782.  https://doi.org/10.1148/radiol.15150025 CrossRefPubMedGoogle Scholar
  12. 12.
    McDonald JS, McDonald RJ, Jentoft ME et al (2017) Intracranial gadolinium deposition following gadodiamide-enhanced magnetic resonance imaging in pediatric patients: a case-control study. JAMA Pediatr 171:705–707.  https://doi.org/10.1001/jamapediatrics.2017.0264 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology 281:418–426.  https://doi.org/10.1148/radiol.2016152846 CrossRefPubMedGoogle Scholar
  14. 14.
    Roberts DR, Lindhorst SM, Welsh CT, Maravilla KR, Herring MN, Adam Braun K, Thiers BH, Davis WC (2016) High levels of gadolinium deposition in the skin of a patient with normal renal function. Investig Radiol 51:280–289.  https://doi.org/10.1097/RLI.0000000000000266 CrossRefGoogle Scholar
  15. 15.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with Normal renal function. Investig Radiol 51:447–453.  https://doi.org/10.1097/RLI.0000000000000252 CrossRefGoogle Scholar
  16. 16.
    White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Investig Radiol 41:272–278.  https://doi.org/10.1097/01.rli.0000186569.32408.95 CrossRefGoogle Scholar
  17. 17.
    Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, Lum A (2016) Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 316:96–98.  https://doi.org/10.1001/jama.2016.8096 CrossRefPubMedGoogle Scholar
  18. 18.
    Maloney E, Stanescu AL, Perez FA, Iyer RS, Otto RK, Leary S, Steuten L, Phipps AI, Shaw DWW (2018) Surveillance magnetic resonance imaging for isolated optic pathway gliomas: is gadolinium necessary? Pediatr Radiol 48:1472–1484.  https://doi.org/10.1007/s00247-018-4154-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Binning MJ, Liu JK, Kestle JRW, Brockmeyer DL, Walker ML (2007) Optic pathway gliomas: a review. Neurosurg Focus 23:E2.  https://doi.org/10.3171/FOC-07/11/E2 CrossRefPubMedGoogle Scholar
  20. 20.
    Rasool N, Odel JG, Kazim M (2017) Optic pathway glioma of childhood. Curr Opin Ophthalmol 28:289–295.  https://doi.org/10.1097/ICU.0000000000000370 CrossRefPubMedGoogle Scholar
  21. 21.
    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-oncology 19:v1–v88.  https://doi.org/10.1093/neuonc/nox158 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Albers AC, Gutmann DH (2009) Gliomas in patients with neurofibromatosis type 1. Expert Rev Neurother 9:535–539.  https://doi.org/10.1586/ern.09.4 CrossRefPubMedGoogle Scholar
  23. 23.
    Goodden J, Pizer B, Pettorini B, Williams D, Blair J, Didi M, Thorp N, Mallucci C (2014) The role of surgery in optic pathway/hypothalamic gliomas in children. J Neurosurg Pediatr 13:1–12.  https://doi.org/10.3171/2013.8.PEDS12546 CrossRefPubMedGoogle Scholar
  24. 24.
    Wan MJ, Ullrich NJ, Manley PE, Kieran MW, Goumnerova LC, Heidary G (2016) Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neuro-Oncol 129:173–178.  https://doi.org/10.1007/s11060-016-2163-4 CrossRefGoogle Scholar
  25. 25.
    Listernick R, Ferner RE, Liu GT, Gutmann DH (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198.  https://doi.org/10.1002/ana.21107 CrossRefPubMedGoogle Scholar
  26. 26.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-Oncology 17:iv1–iv62.  https://doi.org/10.1093/neuonc/nov189 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Czyzyk E, Jóźwiak S, Roszkowski M, Schwartz RA (2003) Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol 18:471–478.  https://doi.org/10.1177/08830738030180070401 CrossRefPubMedGoogle Scholar
  29. 29.
    Gaudino S, Martucci M, Russo R, Visconti E, Gangemi E, D’Argento F, Verdolotti T, Lauriola L, Colosimo C (2017) MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma. Childs Nerv Syst 33:35–54.  https://doi.org/10.1007/s00381-016-3262-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Sato K, Rorke LB (1989) Vascular bundles and wickerworks in childhood brain tumors. Pediatr Neurosci 15:105–110CrossRefGoogle Scholar
  31. 31.
    Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225.  https://doi.org/10.1148/radiology.189.1.8372197 CrossRefPubMedGoogle Scholar
  32. 32.
    Gaudino S, Quaglio FR, Schiarelli C, Martucci M, Tartaglione T, Gualano MR, di Lella GM, Colosimo C (2012) Spontaneous modifications of contrast enhancement in childhood non-cerebellar pilocytic astrocytomas. Neuroradiology 54:989–995.  https://doi.org/10.1007/s00234-012-1010-3 CrossRefPubMedGoogle Scholar
  33. 33.
    Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, Packer RJ, Tabori U, Hoffman RO, Ardern-Holmes SL, Hummel TR, Hargrave DR, Bouffet E, Charrow J, Bilaniuk LT, Balcer LJ, Liu GT (2012) Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology 14:790–797.  https://doi.org/10.1093/neuonc/nos076 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kelly JP, Leary S, Khanna P, Weiss AH (2012) Longitudinal measures of visual function, tumor volume, and prediction of visual outcomes after treatment of optic pathway gliomas. Ophthalmology 119:1231–1237.  https://doi.org/10.1016/j.ophtha.2011.12.035 CrossRefPubMedGoogle Scholar
  35. 35.
    Shofty B, Mauda-Havakuk M, Weizman L, Constantini S, Ben-Bashat D, Dvir R, Pratt LT, Joskowicz L, Kesler A, Yalon M, Ravid L, Ben-Sira L (2015) The effect of chemotherapy on optic pathway gliomas and their sub-components: a volumetric MR analysis study. Pediatr Blood Cancer 62:1353–1359.  https://doi.org/10.1002/pbc.25480 CrossRefPubMedGoogle Scholar
  36. 36.
    Taylor T, Jaspan T, Milano G et al (2008) Radiological classification of optic pathway gliomas: experience of a modified functional classification system. Br J Radiol 81:761–766.  https://doi.org/10.1259/bjr/65246351 CrossRefPubMedGoogle Scholar
  37. 37.
    Dodge HW, Love JG, Craig WM et al (1958) Gliomas of the optic nerves. AMA Arch Neurol Psychiatry 79:607–621CrossRefGoogle Scholar
  38. 38.
    Lee AG (2007) Neuroophthalmological management of optic pathway gliomas. Neurosurg Focus 23:E1.  https://doi.org/10.3171/FOC-07/11/E1 CrossRefPubMedGoogle Scholar
  39. 39.
    Lambron J, Rakotonjanahary J, Loisel D, Frampas E, de Carli E, Delion M, Rialland X, Toulgoat F (2016) Can we improve accuracy and reliability of MRI interpretation in children with optic pathway glioma? Proposal for a reproducible imaging classification. Neuroradiology 58:197–208.  https://doi.org/10.1007/s00234-015-1612-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Weizman L, Ben Sira L, Joskowicz L, Constantini S, Precel R, Shofty B, Ben Bashat D (2012) Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16:177–188.  https://doi.org/10.1016/j.media.2011.07.001 CrossRefPubMedGoogle Scholar
  41. 41.
    Sorensen AG, Patel S, Harmath C, Bridges S, Synnott J, Sievers A, Yoon YH, Lee EJ, Yang MC, Lewis RF, Harris GJ, Lev M, Schaefer PW, Buchbinder BR, Barest G, Yamada K, Ponzo J, Kwon HY, Gemmete J, Farkas J, Tievsky AL, Ziegler RB, Salhus MRC, Weisskoff R (2001) Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol 19:551–557.  https://doi.org/10.1200/JCO.2001.19.2.551 CrossRefPubMedGoogle Scholar
  42. 42.
    Liu J, Udupa JK, Odhner D, Hackney D, Moonis G (2005) A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imaging Graph 29:21–34.  https://doi.org/10.1016/j.compmedimag.2004.07.008 CrossRefPubMedGoogle Scholar
  43. 43.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841.  https://doi.org/10.1148/radiol.13131669 CrossRefPubMedGoogle Scholar
  44. 44.
    Splendiani A, Perri M, Marsecano C, Vellucci V, Michelini G, Barile A, di Cesare E (2018) Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 123:125–134.  https://doi.org/10.1007/s11547-017-0816-9 CrossRefPubMedGoogle Scholar
  45. 45.
    Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Investig Radiol 43:817–828.  https://doi.org/10.1097/RLI.0b013e3181852171 CrossRefGoogle Scholar
  46. 46.
    Jittapiromsak N, Hou P, Liu H-L, Sun J, Slopis JM, Chi TL (2017) Prognostic role of conventional and dynamic contrast-enhanced MRI in optic pathway gliomas: conventional and DCE MRI in optic pathway glioma. J Neuroimaging 27:594–601.  https://doi.org/10.1111/jon.12450 CrossRefPubMedGoogle Scholar
  47. 47.
    Strong JA, Hatten HP, Brown MT et al (1993) Pilocytic astrocytoma: correlation between the initial imaging features and clinical aggressiveness. Am J Roentgenol 161:369–372.  https://doi.org/10.2214/ajr.161.2.8333380 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of Pediatric RadiologyPellegrin Children’s HospitalBordeauxFrance
  2. 2.Department of Pediatric Hematology and OncologyPellegrin Children’s HospitalBordeauxFrance
  3. 3.CRMSB, UMR 5536CNRS/University of BordeauxBordeaux CedexFrance

Personalised recommendations