Advertisement

Micro-CT myelography using contrast-enhanced digital subtraction: feasibility and initial results in healthy rats

  • Pablo C. Zambrano-Rodríguez
  • Sirio Bolaños-Puchet
  • Horacio J. Reyes-Alva
  • Luis E. García-Orozco
  • Mario E. Romero-Piña
  • Angelina Martinez-Cruz
  • Gabriel Guízar-SahagúnEmail author
  • Luis A. MedinaEmail author
Spinal Neuroradiology
  • 33 Downloads

Abstract

Purpose

The spinal subarachnoid space (SSAS) is vital for neural performance. Although models of spinal diseases and trauma are used frequently, no methods exist to obtain high-resolution myelograms in rodents. Thereby, our aim was to explore the feasibility of obtaining high-resolution micro-CT myelograms of rats by contrast-enhanced dual-energy (DE) and single-energy (SE) digital subtraction.

Methods

Micro-CT contrast-enhanced DE and SE imaging protocols were implemented with live adult rats (total of 18 animals). For each protocol, contrast agents based on iodine (Iomeron® 400 and Fenestra® VC) and gold nanoparticles (AuroVist™ 15 nm) were tested. For DE, images at low- and high-energy settings were acquired after contrast injection; for SE, one image was acquired before and the other after contrast injection. Post-processing consisted of region of interest selection, image registration, weighted subtraction, and longitudinal alignment.

Results

High-resolution myelograms were obtained with contrast-enhanced digital subtraction protocols. After qualitative and quantitative (contrast-to-noise ratio) analyses, we found that the SE acquisition protocol with Iomeron® 400 provides the best images. 3D contour renderings allowed visualization of SSAS and identification of some anatomical structures within it.

Conclusion

This in vivo study shows the potential of SE contrast-enhanced myelography for imaging SSAS in rat. This approach yields high-resolution 3D images without interference from adjacent anatomical structures, providing an innovative tool for further assessment of studies involving rat SSAS.

Keywords

Metal nanoparticles Myelography Subarachnoid space Subtraction technique Three-dimensional X-ray microtomography 

Notes

Compliance with ethical standards

Funding

This study was funded by the Fund for Health Research (Grant FIS/IMSS/PROT/G15/1465) from the Instituto Mexicano del Seguro Social (http://www.imss.gob.mx) and institutional research resources from the National Cancer Institute, Mexico (http://www.incan.salud.gob.mx).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Committee of Ethics in Research of the Instituto Mexicano del Seguro Social (File no. R-2014-785-099). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Yoshizawa H (2002) Presidential address: pathomechanism of myelopathy and radiculopathy from the viewpoint of blood flow and cerebrospinal fluid flow including a short historical review. Spine (Phila Pa 1976) 27:1255–1263CrossRefGoogle Scholar
  2. 2.
    Brodbelt A, Stoodley M (2007) CSF pathways: a review. Br J Neurosurg 21:510–520.  https://doi.org/10.1080/02688690701447420 CrossRefGoogle Scholar
  3. 3.
    Zappaterra MW, Lehtinen MK (2012) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878.  https://doi.org/10.1007/s00018-012-0957-x CrossRefGoogle Scholar
  4. 4.
    Grossman SA, Krabak MJ (1999) Leptomeningeal carcinomatosis. Cancer Treat Rev 25:103–119.  https://doi.org/10.1053/ctrv.1999.0119 CrossRefGoogle Scholar
  5. 5.
    Brodbelt AR, Stoodley MA, Watling AM, Tu J, Burke S, Jones NR (2003) Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia. Spine (Phila Pa 1976) 28:E413–E4199.  https://doi.org/10.1097/01.BRS.0000092346.83686.B9 CrossRefGoogle Scholar
  6. 6.
    Maxmauer U, Danz B, Gottschalk A, Kunz U (2011) Endoscope-assisted surgery of spinal intradural adhesions in the presence of cerebrospinal fluid flow obstruction. Spine (Phila Pa 1976) 36:E773–E779.  https://doi.org/10.1097/BRS.0b013e3181fb8698 CrossRefGoogle Scholar
  7. 7.
    Reyes-Alva HJ, Franco-Bourland RE, Martinez-Cruz A, Grijalva I, Madrazo I, Guizar-Sahagun G (2013) Spatial and temporal morphological changes in the subarachnoid space after graded spinal cord contusion in the rat. J Neurotrauma 30:1084–1091.  https://doi.org/10.1089/neu.2012.2764 CrossRefGoogle Scholar
  8. 8.
    Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52.  https://doi.org/10.1016/S0070-2153(05)71001-2 CrossRefGoogle Scholar
  9. 9.
    Mason WP, Yeh SD, DeAngelis LM (1998) 111Indium-diethylenetriamine pentaacetic acid cerebrospinal fluid flow studies predict distribution of intrathecally administered chemotherapy and outcome in patients with leptomeningeal metastases. Neurology 50:438–444.  https://doi.org/10.1212/WNL.50.2.438 CrossRefGoogle Scholar
  10. 10.
    Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137.  https://doi.org/10.1242/dmm.025833 CrossRefGoogle Scholar
  11. 11.
    Iannotti C, Zhang YP, Shields LB, Han Y, Burke Da XXM, Shields CB (2006) Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma 23:853–865.  https://doi.org/10.1089/neu.2006.23.853 CrossRefGoogle Scholar
  12. 12.
    Franco-Bourland RE, Guízar-Sahagún G, Quintana-Armenta A, Reyes-Alva HJ, Martínez-Cruz A, Madrazo I (2013) Superparamagnetic beads for estimation of spinal subarachnoid space permeability in rats. J Neurosci Methods 219:271–275.  https://doi.org/10.1016/j.jneumeth.2013.08.004 CrossRefGoogle Scholar
  13. 13.
    Levy LM (1999) MR imaging of cerebrospinal fluid flow and spinal cord motion in neurologic disorders of the spine. Magn Reson Imaging Clin N Am 7:573–587Google Scholar
  14. 14.
    Mauer UM, Freude G, Danz B, Kunz U (2008) Cardiac-gated phase-contrast magnetic resonance imaging of cerebrospinal fluid flow in the diagnosis of idiopathic syringomyelia. Neurosurgery 63:1139–1944.  https://doi.org/10.1227/01.NEU.0000334411.93870.45 CrossRefGoogle Scholar
  15. 15.
    Yiallourou TI, Kroger JR, Stergiopulos N, Maintz D, Martin BA, Bunck AC (2012) Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One 7:e52284.  https://doi.org/10.1371/journal.pone.0052284 CrossRefGoogle Scholar
  16. 16.
    Kuhlman JE, Collins J, Brooks GN, Yandow DR, Broderick LS (2006) Dual-energy subtraction chest radiography: what to look for beyond calcified nodules. Radiographics 26:79–92.  https://doi.org/10.1148/rg.261055034 CrossRefGoogle Scholar
  17. 17.
    Li F, Engelmann R, Doi K, MacMahon H (2008) Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR Am J Roentgenol 190:886–891.  https://doi.org/10.2214/AJR.07.2875 CrossRefGoogle Scholar
  18. 18.
    Castillo JP, Corona-Nieblas L, Berumen F, Ayala-Domínguez L, Medina LA, Brandan ME (2016) Optimization of dual-energy subtraction for preclinical studies using a commercial MicroCT unit. AIP Conf Proc.  https://doi.org/10.1063/1.4954125
  19. 19.
    Lewin JM, Isaacs PK, Vance V, Larke FJ (2003) Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 229:261–268.  https://doi.org/10.1148/radiol.2291021276 CrossRefGoogle Scholar
  20. 20.
    Cruz-Bastida JP, Rosado-Mendez I, Perez-Ponce H, Villaseñor Y, Galván HA, Trujillo FE, Benítez L, Brandan ME (2012) Contrast optimization in clinical contrast-enhanced digital mammography images. In: Maidment ADA, Bakic PR, Gavenonis S (eds) Breast imaging, vol 7361. Springer, Berlin, Heidelberg, pp 17–23CrossRefGoogle Scholar
  21. 21.
    Berumen F, Ayala-Domínguez L, Medina LA, Brandan ME (2016) A method to optimize the image acquisition protocol of a MicroCT unit for preclinical studies using contrast-enhanced digital subtraction. AIP Conf Proc 1747:080003.  https://doi.org/10.1063/1.4954123 CrossRefGoogle Scholar
  22. 22.
    van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J (2015) The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157:35–47.  https://doi.org/10.1016/j.ultramic.2015.05.002 CrossRefGoogle Scholar
  23. 23.
    van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, De Beenhouwer J, Batenburg KJ, Sijbers J (2016) Fast and flexible X-ray tomography using the ASTRA toolbox. Opt Express 24:25129–25147.  https://doi.org/10.1364/OE.24.025129 CrossRefGoogle Scholar
  24. 24.
    Noo F, Clackdoyle R, Mennessier C, White T, Timothy JR (2000) Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography. Phys Med Biol 45:3489–3508.  https://doi.org/10.1088/0031-9155/45/11/327 CrossRefGoogle Scholar
  25. 25.
    Ourselin S, Roche A, Subsol G, Pennec X, Ayache N (2001) Reconstructing a 3d structure from serial histological sections. Image Vis Comput 19:25–31.  https://doi.org/10.1016/S0262-8856(00)00052-4 CrossRefGoogle Scholar
  26. 26.
    Bushberg JT, Seibert JA, Boone JM, Leidholdt EM (2012) The essential physics of medical imaging, vol 40, 3rd edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia.  https://doi.org/10.1118/1.4811156 Google Scholar
  27. 27.
    Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization. In: Hansen CD, Johnson CR (eds) The Visualization Handbook. Elsevier, Oxford, pp 717–731Google Scholar
  28. 28.
    Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:34–39.  https://doi.org/10.1016/S0167-7799(02)02004-8 CrossRefGoogle Scholar
  29. 29.
    Bentley MD, Ortiz MC, Ritman EL, Romero JC (2002) The use of microcomputed tomography to study microvasculature in small rodents. Am J Phys Regul Integr Comp Phys 282:1267–1279.  https://doi.org/10.1152/ajpregu.00560.2001 Google Scholar
  30. 30.
    Ritman EL (2004) Micro-computed tomography: current status and developments. Annu Rev Biomed Eng 6:185–208.  https://doi.org/10.1146/annurev.bioeng.6.040803.140130 CrossRefGoogle Scholar
  31. 31.
    Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253.  https://doi.org/10.1259/bjr/13169882 CrossRefGoogle Scholar
  32. 32.
    Choukèr A, Lizak M, Schimel D, Helmberger T, Ward JM, Despres D, Kaufmann I, Bruns C, Löhe F, Ohta A, Sitkovsky MV, Klaunberg B, Thiel M (2008) Comparison of fenestra VC contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion. Investig Radiol 43:77–91.  https://doi.org/10.1097/RLI.0b013e318155aa2e CrossRefGoogle Scholar
  33. 33.
    Hubbell JH, Seltzer SM (2004) X-ray mass attenuation coefficients (NIST standard reference database 126). National Institute of Standards and Technology.  https://doi.org/10.18434/T4D01F

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Unidad de Investigación Biomédica en Cáncer INCan/UNAMInstituto Nacional de CancerologíaMexico CityMexico
  3. 3.Department of Experimental SurgeryProyecto Camina A.CMexico CityMexico
  4. 4.Research Unit for Neurological Diseases, Hospital de Especialidades Centro Médico Nacional Siglo XXIIMSSMexico CityMexico
  5. 5.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations