, Volume 60, Issue 7, pp 703–713 | Cite as

Is deep brain involvement in intracranial primary central nervous system lymphoma of importance for penetration of chemotherapeutic agents?

  • Torstein R. Meling
  • Anna Latysheva
  • Michele Da Broi
  • Guro Jahr
  • Harald HolteJr
  • Klaus Beiske
  • Kyrre Eeg Emblem
Diagnostic Neuroradiology



The purposes of this study are to study the impact of deep brain involvement on overall survival (OS) and progression-free survival (PFS) in intracranial primary CNS lymphoma (PCNSL), and to explore possible mechanisms for this impact using advanced MRI techniques.


Seventy-nine patients with histologically verified PCNSL were identified from a prospective clinical database of patients treated at Oslo University Hospital between 2003 and 2014. Patients were treated per standard chemotherapeutic regimens (N = 57) or no chemotherapy (N = 22). Anatomical MRIs were available in all patients to assess tumor load and location based on contrast agent enhancement visible on T1-weighted images. Diffusion MRIs were available in 33 (42%) patients and perfusion MRI in 13 (16%) patients that received active treatment.


Across all patients, OS and PFS were 16.4 and 9.8 months, respectively. In multivariate analysis, MRI-based deep brain involvement (80%) was the only negative significant factor of OS (OR = 14.2; P < 0.005). While a reduced Karnofsky performance status was associated with deep brain involvement (P < 0.05), neither chemotherapy regimen, neurologic status, nor patient age were independent significant factors for OS or PFS in this setting. Compared to other tumors and healthy tissue levels, MRI perfusion showed more pathologic hemodynamic flow signatures in tumors with deep brain involvement.


In intracranial PCNSL, the only significant prognostic factor for OS and PFS in multivariate analysis was age and deep brain involvement. While contingent on a small study sample, we hypothesize this may in part be explained by regional differences in vascular supply and delivery from a dysfunctional perfusion signature.


Lymphoma Oncology Prognostic factors MRI Surgery 


Compliance with ethical standards


No funding was received for this study.

Conflict of interest

KEE has intellectual property rights at NordicNeuroLab AS, Bergen, Norway.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

For this type of retrospective study formal consent is not required.


  1. 1.
    Norden AD, Drappatz J, Wen PY, Claus EB (2010) Survival among patients with primary central nervous system lymphoma, 1973-2004. J Neuro-Oncol 101(3):487–493CrossRefGoogle Scholar
  2. 2.
    Ferreri AJ, Blay JY, Reni M, Pasini F, Spina M, Ambrosetti A et al (2003) Prognostic scoring system for primary CNS lymphomas: the international extranodal lymphoma study group experience. J Clin Oncol 21(2):266–272CrossRefPubMedGoogle Scholar
  3. 3.
    Bessell EM, Graus F, Lopez-Guillermo A, Lewis SA, Villa S, Verger E, Petit J (2004) Primary non-Hodgkin’s lymphoma of the CNS treated with CHOD/BVAM or BVAM chemotherapy before radiotherapy: long-term survival and prognostic factors. Int J Radiat Oncol Biol Phys 59(2):501–508CrossRefPubMedGoogle Scholar
  4. 4.
    Jahr G, Da Broi M, Holthe Jr H, Beiske K, Meling TR (2018) Evaluation of MSKCC and IELSG prognostic scoring systems to predict overall survival in intracranial primary CNS lymphoma. Brain Behav in pressGoogle Scholar
  5. 5.
    Ghesquieres H, Drouet Y, Sunyach MP, Sebban C, Chassagne-Clement C, Jouanneau E et al (2013) Evidence of time-dependent prognostic factors predicting early death but not long-term outcome in primary CNS lymphoma: a study of 91 patients. Hematol Oncol 31(2):57–64CrossRefPubMedGoogle Scholar
  6. 6.
    Schorb E, Kasenda B, Atta J, Kaun S, Morgner A, Hess G, Elter T, von Bubnoff N, Dreyling M, Ringhoffer M, Krause SW, Derigs G, Klimm B, Niemann D, Fritsch K, Finke J, Illerhaus G (2013) Prognosis of patients with primary central nervous system lymphoma after high-dose chemotherapy followed by autologous stem cell transplantation. Haematologica 98(5):765–770CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ghesquières H, Ferlay C, Sebban C, Perol D, Bosly A, Casasnovas O et al (2010) Long-term follow-up of an age-adapted C5R protocol followed by radiotherapy in 99 newly diagnosed primary CNS lymphomas: a prospective multicentric phase II study of the Groupe d'Etude des Lymphomes de l'Adulte (GELA). Ann Oncol 21(4):842–850CrossRefPubMedGoogle Scholar
  8. 8.
    Abrey LE, Ben-Porat L, Panageas KS, Yahalom J, Berkey B, Curran W, Schultz C, Leibel S, Nelson D, Mehta M, DeAngelis LM (2006) Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. J Clin Oncol 24(36):5711–5715CrossRefPubMedGoogle Scholar
  9. 9.
    Viallon M, Cuvinciuc V, Delattre B, Merlini L, Barnaure-Nachbar I, Toso-Patel S, Becker M, Lovblad KO, Haller S (2015) State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 57(5):441–467CrossRefPubMedGoogle Scholar
  10. 10.
    Covarrubias DJ, Rosen BR, Lev MH (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9(5):528–537CrossRefPubMedGoogle Scholar
  11. 11.
    Xu W, Wang Q, Shao A, Xu B, Zhang J (2017) The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: a systematic review and meta-analysis. PLoS One 12(3):e0173430CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Blasel S, Jurcoane A, Bahr O, Weise L, Harter PN, Hattingen E (2013) MR perfusion in and around the contrast-enhancement of primary CNS lymphomas. J Neuro-Oncol 114(1):127–134CrossRefGoogle Scholar
  13. 13.
    Lister A, Abrey LE, Sandlund JT (2002) Central nervous system lymphoma. Hematology Am Soc Hematol Educ Program 2002(1):283–296Google Scholar
  14. 14.
    Hasan KM, Ali H, Shad MU (2013) Atlas-based and DTI-guided quantification of human brain cerebral blood flow: feasibility, quality assurance, spatial heterogeneity and age effects. Magn Reson Imaging 31(8):1445–1452CrossRefPubMedGoogle Scholar
  15. 15.
    Baraniskin A, Deckert M, Schulte-Altedorneburg G, Schlegel U, Schroers R (2012) Current strategies in the diagnosis of diffuse large B-cell lymphoma of the central nervous system. Br J Haematol 156(4):421–432CrossRefPubMedGoogle Scholar
  16. 16.
    Pulczynski EJ, Kuittinrn O, Erlanson M, Hagberg H, Nordstrøm M, Østenstad B et al (2015) Successful change of treatment strategy in elderly patients with primary central nervous system lymphoma by de-escalating induction and introducing temozolomide maintenance: results from a phase II study by the Nordic lymphoma group. Haematologica 100:534–540CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hrabe J, Kaur G, Guilfoyle DN (2007) Principles and limitations of NMR diffusion measurements. J Med Phys 32(1):34–42CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Emblem KE, Pinho MC, Zollner FG, Due-Tonnessen P, Hald JK, Schad LR et al (2015) A generic support vector machine model for preoperative glioma survival associations. Radiology 275(1):228–234CrossRefPubMedGoogle Scholar
  19. 19.
    Neska-Matuszewska M, Bladowska J, Sasiadek M, Zimny A (2018) Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone-searching for a practical approach. PLoS One 13(1):e0191341CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Abrey LE, Batchelor TT, Ferreri AJ, Gospodarowicz M, Pulczynski EJ, Zucca E, Smith JR, Korfel A, Soussain C, DeAngelis L, Neuwelt EA, O'Neill BP, Thiel E, Shenkier T, Graus F, van den Bent M, Seymour JF, Poortmans P, Armitage JO, Cavalli F, International Primary CNS Lymphoma Collaborative Group (2005) Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol 23(22):5034–5043CrossRefPubMedGoogle Scholar
  21. 21.
    Elder JB, Chen TC (2006) Surgical interventions for primary central nervous system lymphoma. Neurosurg Focus 21(5):E13CrossRefPubMedGoogle Scholar
  22. 22.
    Blasel S, Vorwerk R, Kiyose M, Mittelbronn M, Brunnberg U, Ackermann H, Voss M, Harter PN, Hattingen E (2018) New MR perfusion features in primary central nervous system lymphomas: pattern and prognostic impact. J Neurol 265(3):647–658CrossRefPubMedGoogle Scholar
  23. 23.
    Kim YS, Choi SH, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH, Park SH, Won JK, Kim TM, Park CK, Kim IH (2018) Leakage correction improves prognosis prediction of dynamic susceptibility contrast perfusion MRI in primary central nervous system lymphoma. Sci Rep 8(1):456CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jespersen SN, Ostergaard L (2012) The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 32(2):264–277CrossRefPubMedGoogle Scholar
  25. 25.
    Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58(6):1232–1241CrossRefPubMedGoogle Scholar
  26. 26.
    Bjornerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 30(5):1066–1078CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Digernes I, Bjornerud A, Vatnehol SAS, Lovland G, Courivaud F, Vik-Mo E et al (2017) A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI. J Cereb Blood Flow Metab 37(6):2237–2248CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wilhelm I, Nyul-Toth A, Suciu M, Hermenean A, Krizbai IA (2016) Heterogeneity of the blood-brain barrier. Tissue Barriers 4(1):e1143544CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schultz C, Scott C, Sherman W, Donahue B, Fields J, Murray K, Fisher B, Abrams R, Meis-Kindblom J (1996) Preirradiation chemotherapy with cyclophosphamide, doxorubicin, vincristine, and dexamethasone for primary CNS lymphomas: initial report of radiation therapy oncology group protocol 88-06. J Clin Oncol 14(2):556–564CrossRefPubMedGoogle Scholar
  30. 30.
    Gavrilovic IT, Hormigo A, Yahalom J, DeAngelis LM, Abrey LE (2006) Long-term follow-up of high-dose methotrexate-based therapy with and without whole brain irradiation for newly diagnosed primary CNS lymphoma. J Clin Oncol 24(28):4570–4574CrossRefPubMedGoogle Scholar
  31. 31.
    Batchelor T, Carson K, O’Neill A, Grossman SA, Alavi J, New P et al (2003) Treatment of primary CNS lymphoma with methotrexate and deferred radiotherapy: a report of NABTT 96-07. J Clin Oncol 21(6):1044–1049CrossRefPubMedGoogle Scholar
  32. 32.
    Fraser E, Gruenberg K, Rubenstein JL (2015) New approaches in primary central nervous system lymphoma. Chin Clin Oncol 4(1):11PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hoang-Xuan K, Bessell E, Bromberg J, Hottinger AF, Preusser M, Rudà R, Schlegel U, Siegal T, Soussain C, Abacioglu U, Cassoux N, Deckert M, Dirven CM, Ferreri AJ, Graus F, Henriksson R, Herrlinger U, Taphoorn M, Soffietti R, Weller M, European Association for Neuro-Oncology Task Force on Primary CNS Lymphoma (2015) Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: guidelines from the European Association for Neuro-Oncology. Lancet Oncol 16(7):e322–e332CrossRefPubMedGoogle Scholar
  34. 34.
    Ferreri AJ, Reni M, Foppoli M, Martelli M, Pangalis GA, Frezzato M et al (2009) High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase 2 trial. Lancet 374(9700):1512–1520CrossRefPubMedGoogle Scholar
  35. 35.
    Ly KI, Crew LL, Graham CA, Mrugala MM (2016) Primary central nervous system lymphoma treated with high-dose methotrexate and rituximab: a single-institution experience. Oncol Lett 11(5):3471–3476CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Madle M, Kramer I, Lehners N, Schwarzbich M, Wuchter P, Herfarth K et al (2015) The influence of rituximab, high-dose therapy followed by autologous stem cell transplantation, and age in patients with primary CNS lymphoma. Ann Hematol 94(11):1853–1857CrossRefPubMedGoogle Scholar
  37. 37.
    Morris PG, Correa DD, Yahalom J, Raizer JJ, Schiff D, Grant B, Grimm S, Lai RK, Reiner AS, Panageas K, Karimi S, Curry R, Shah G, Abrey LE, DeAngelis LM, Omuro A (2013) Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. J Clin Oncol 31(31):3971–3979CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Houillier C, Ghesquieres H, Chabrot C, Soussain C, Ahle G, Choquet S et al (2017) Rituximab, methotrexate, procarbazine, vincristine and intensified cytarabine consolidation for primary central nervous system lymphoma (PCNSL) in the elderly: a LOC network study. J Neuro-Oncol 133(2):315–320CrossRefGoogle Scholar
  39. 39.
    Hitchcock SA, Pennington LD (2006) Structure-brain exposure relationships. J Med Chem 49(26):7559–7583CrossRefPubMedGoogle Scholar
  40. 40.
    Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88(1054):20150207CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryOslo University HospitalOsloNorway
  2. 2.Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
  3. 3.Department of RadiologyOslo University HospitalOsloNorway
  4. 4.Department of OncologyOslo University HospitalOsloNorway
  5. 5.Department of PathologyOslo University HospitalOsloNorway
  6. 6.Department of Diagnostic PhysicsOslo University HospitalOsloNorway

Personalised recommendations