Advertisement

MRI features suggestive of gadolinium retention do not correlate with Expanded Disability Status Scale worsening in Multiple Sclerosis

  • Sirio CocozzaEmail author
  • Giuseppe Pontillo
  • Roberta Lanzillo
  • Camilla Russo
  • Maria Petracca
  • Martina Di Stasi
  • Chiara Paolella
  • Elena Augusta Vola
  • Chiara Criscuolo
  • Marcello Moccia
  • Anna Lamberti
  • Serena Monti
  • Vincenzo Brescia Morra
  • Andrea Elefante
  • Giuseppe Palma
  • Enrico Tedeschi
  • Arturo Brunetti
Diagnostic Neuroradiology

Abstract

Purpose

Different studies showed correlations between gadolinium-based contrast agent (GBCA) administrations and dentate nucleus (DN) T1-weighted hyperintensity. The clinical impact of gadolinium retention, however, is still largely unknown. The aim of this study was to investigate relations between MRI and clinical disability in relapsing–remitting multiple sclerosis (RR-MS) patients.

Methods

In this retrospective study, clinical data were obtained from 74 RR-MS patients at baseline and after a mean follow-up time of 3.6 years, including the expanded disability status scale (EDSS) score and its change (ΔEDSS). Patients were considered showing clinical worsening if they score a ΔEDSS ≥ 1 (for baseline EDSS ≤ 5.5) or ΔEDSS ≥ 0.5 (for baseline EDSS > 5.5). From the MRI data, the presence of bilateral DN hyperintensity was recorded along with the calculation of longitudinal relaxation rate (R1) maps.

Results

Patients with DN hyperintensity showed similar ΔEDSS change compared to those without visible changes on T1-weighted images (p = 0.32). Similarly, no DN-R1 difference was found comparing stable patients with those showing a significant clinical worsening (p = 0.54). Finally, no significant effect of DN-R1 values explained the variance in ΔEDSS (p = 0.76), thus suggesting their independence from the clinical outcome.

Conclusions

MS patients with DN hyperintensity show similar EDSS changes compared to subjects without DN high-signal intensity. Furthermore, mean DN-R1 values of patients with significant clinical worsening were comparable to those of stable subjects and were unrelated to clinical disability. Taken together, these findings suggest that gadolinium retention in the brain of MS patients does not affect their clinical worsening, expressed by the EDSS change.

Keywords

Gadolinium-based contrast agents Multiple sclerosis GBCA accumulation EDSS 

Notes

Compliance with ethical standards

Funding

No funding was received for this study.

Conflict of interest

SC and CR receive speaking fees from Genzyme. MM has received research grants from ECTRIMS-MAGNIMS and Merck.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30(6):1259–1267.  https://doi.org/10.1002/jmri.21969 CrossRefGoogle Scholar
  2. 2.
    Kanal E, Maravilla K, Rowley HA (2014) Gadolinium contrast agents for CNS imaging: current concepts and clinical evidence. AJNR Am J Neuroradiol 35(12):2215–2226.  https://doi.org/10.3174/ajnr.A3917 CrossRefGoogle Scholar
  3. 3.
    Jung JW, Kang HR, Kim MH, Lee W, Min KU, Han MH, Cho SH (2012) Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology 264(2):414–422.  https://doi.org/10.1148/radiol.12112025 CrossRefGoogle Scholar
  4. 4.
    Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108.  https://doi.org/10.1093/ndt/gfk062 CrossRefGoogle Scholar
  5. 5.
    McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY (2018) Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 181151:517–534.  https://doi.org/10.1148/radiol.2018181151 CrossRefGoogle Scholar
  6. 6.
    U.S. Food & Drug Administration (2017) 2017 Meeting Materials, Medical Imaging Drugs Advisory Committee. https://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/MedicalImagingDrugsAdvisoryCommittee/ucm553470.htm
  7. 7.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841.  https://doi.org/10.1148/radiol.13131669 CrossRefGoogle Scholar
  8. 8.
    Roberts DR, Holden KR (2016) Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain and Development 38(3):331–336.  https://doi.org/10.1016/j.braindev.2015.08.009 CrossRefGoogle Scholar
  9. 9.
    Tedeschi E, Caranci F, Giordano F, Angelini V, Cocozza S, Brunetti A (2017) Gadolinium retention in the body: what we know and what we can do. Radiol Med 122(8):589–600.  https://doi.org/10.1007/s11547-017-0757-3 CrossRefGoogle Scholar
  10. 10.
    Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16(7):564–570.  https://doi.org/10.1016/S1474-4422(17)30158-8 CrossRefGoogle Scholar
  11. 11.
    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782.  https://doi.org/10.1148/radiol.15150025 CrossRefGoogle Scholar
  12. 12.
    Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276(3):836–844.  https://doi.org/10.1148/radiol.2015150872 CrossRefGoogle Scholar
  13. 13.
    Robert P, Fingerhut S, Factor C, Vives V, Letien J, Sperling M, Rasschaert M, Santus R, Ballet S, Idee JM, Corot C, Karst U (2018) One-year retention of gadolinium in the brain: comparison of gadodiamide and gadoterate meglumine in a rodent model. Radiology 172746:424–433.  https://doi.org/10.1148/radiol.2018172746 CrossRefGoogle Scholar
  14. 14.
    Smith AP, Marino M, Roberts J, Crowder JM, Castle J, Lowery L, Morton C, Hibberd MG, Evans PM (2017) Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study. Radiology 282(3):743–751.  https://doi.org/10.1148/radiol.2016160905 CrossRefGoogle Scholar
  15. 15.
    Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276(1):228–232.  https://doi.org/10.1148/radiol.2015142690 CrossRefGoogle Scholar
  16. 16.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol 51(7):447–453.  https://doi.org/10.1097/RLI.0000000000000252 CrossRefGoogle Scholar
  17. 17.
    Forslin Y, Shams S, Hashim F, Aspelin P, Bergendal G, Martola J, Fredrikson S, Kristoffersen-Wiberg M, Granberg T (2017) Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study. AJNR Am J Neuroradiol 38(7):1311–1316.  https://doi.org/10.3174/ajnr.A5211 CrossRefGoogle Scholar
  18. 18.
    Burke LM, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC (2016) Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging 34(8):1078–1080.  https://doi.org/10.1016/j.mri.2016.05.005 CrossRefGoogle Scholar
  19. 19.
    Semelka RC, Commander CW, Jay M, Burke LM, Ramalho M (2016) Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases. Investig Radiol 51(10):661–665.  https://doi.org/10.1097/RLI.0000000000000318 CrossRefGoogle Scholar
  20. 20.
    Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M (2016) Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging 34(10):1383–1390.  https://doi.org/10.1016/j.mri.2016.07.016 CrossRefGoogle Scholar
  21. 21.
    Semelka RC, Ramalho M, AlObaidy M, Ramalho J (2016) Gadolinium in humans: a family of disorders. AJR Am J Roentgenol 207(2):229–233.  https://doi.org/10.2214/AJR.15.15842 CrossRefGoogle Scholar
  22. 22.
    Tedeschi E, Palma G, Canna A, Cocozza S, Russo C, Borrelli P, Lanzillo R, Angelini V, Postiglione E, Morra VB, Salvatore M, Brunetti A, Quarantelli M (2016) In vivo dentate nucleus MRI relaxometry correlates with previous administration of gadolinium-based contrast agents. Eur Radiol 26(12):4577–4584.  https://doi.org/10.1007/s00330-016-4245-2 CrossRefGoogle Scholar
  23. 23.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302.  https://doi.org/10.1002/ana.22366 CrossRefGoogle Scholar
  24. 24.
    Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T (2014) Systematic literature review and validity evaluation of the expanded disability status scale (EDSS) and the multiple sclerosis functional composite (MSFC) in patients with multiple sclerosis. BMC Neurol 14:58.  https://doi.org/10.1186/1471-2377-14-58 CrossRefGoogle Scholar
  25. 25.
    Uitdehaag BMJ (2018) Disability outcome measures in phase III clinical trials in multiple sclerosis. CNS Drugs.  https://doi.org/10.1007/s40263-018-0530-8
  26. 26.
    Weinshenker BG (1996) Epidemiology of multiple sclerosis. Neurol Clin 14(2):291–308CrossRefGoogle Scholar
  27. 27.
    Cohen JA, Khatri B, Barkhof F, Comi G, Hartung HP, Montalban X, Pelletier J, Stites T, Ritter S, von Rosenstiel P, Tomic D, Kappos L (2016) Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry 87(5):468–475.  https://doi.org/10.1136/jnnp-2015-310597 CrossRefGoogle Scholar
  28. 28.
    Kalincik T, Cutter G, Spelman T, Jokubaitis V, Havrdova E, Horakova D, Trojano M, Izquierdo G, Girard M, Duquette P, Prat A, Lugaresi A, Grand'Maison F, Grammond P, Hupperts R, Oreja-Guevara C, Boz C, Pucci E, Bergamaschi R, Lechner-Scott J, Alroughani R, Van Pesch V, Iuliano G, Fernandez-Bolanos R, Ramo C, Terzi M, Slee M, Spitaleri D, Verheul F, Cristiano E, Sanchez-Menoyo JL, Fiol M, Gray O, Cabrera-Gomez JA, Barnett M, Butzkueven H (2015) Defining reliable disability outcomes in multiple sclerosis. Brain 138(Pt 11):3287–3298.  https://doi.org/10.1093/brain/awv258 CrossRefGoogle Scholar
  29. 29.
    Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071.  https://doi.org/10.1002/hbm.21344 CrossRefGoogle Scholar
  30. 30.
    Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489CrossRefGoogle Scholar
  31. 31.
    Borrelli P, Palma G, Tedeschi E, Cocozza S, Comerci M, Alfano B, Haacke EM, Salvatore M (2015) Improving signal-to-noise ratio in susceptibility weighted imaging: a novel multicomponent non-local approach. PLoS One 10(6):e0126835.  https://doi.org/10.1371/journal.pone.0126835 CrossRefGoogle Scholar
  32. 32.
    Palma G, Tedeschi E, Borrelli P, Cocozza S, Russo C, Liu S, Ye Y, Comerci M, Alfano B, Salvatore M, Haacke EM, Mancini M (2015) A novel multiparametric approach to 3D quantitative MRI of the brain. PLoS One 10(8):e0134963.  https://doi.org/10.1371/journal.pone.0134963PONE-D-15-18675 CrossRefGoogle Scholar
  33. 33.
    Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29(3):365–376.  https://doi.org/10.1007/s10534-016-9931-7 CrossRefGoogle Scholar
  34. 34.
    Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30(6):1240–1248.  https://doi.org/10.1002/jmri.21966 CrossRefGoogle Scholar
  35. 35.
    Heinrich MC, Kuhlmann MK, Kohlbacher S, Scheer M, Grgic A, Heckmann MB, Uder M (2007) Cytotoxicity of iodinated and gadolinium-based contrast agents in renal tubular cells at angiographic concentrations: in vitro study. Radiology 242(2):425–434.  https://doi.org/10.1148/radiol.2422060245 CrossRefGoogle Scholar
  36. 36.
    Chen R, Ling D, Zhao L, Wang S, Liu Y, Bai R, Baik S, Zhao Y, Chen C, Hyeon T (2015) Parallel comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents. ACS Nano 9(12):12425–12435.  https://doi.org/10.1021/acsnano.5b05783 CrossRefGoogle Scholar
  37. 37.
    Akgun H, Gonlusen G, Cartwright J Jr, Suki WN, Truong LD (2006) Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med 130(9):1354–1357. https://doi.org/10.1043/1543-2165(2006)130[1354:AGCMNA]2.0.CO;2Google Scholar
  38. 38.
    Hui FK, Mullins M (2009) Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity? AJNR Am J Neuroradiol 30(1):E1.  https://doi.org/10.3174/ajnr.A1205 CrossRefGoogle Scholar
  39. 39.
    Blasco-Perrin H, Glaser B, Pienkowski M, Peron JM, Payen JL (2013) Gadolinium induced recurrent acute pancreatitis. Pancreatology 13(1):88–89CrossRefGoogle Scholar
  40. 40.
    Monti S, Borrelli P, Tedeschi E, Cocozza S, Palma G (2017) RESUME: turning an SWI acquisition into a fast qMRI protocol. PLoS One 12(12):e0189933.  https://doi.org/10.1371/journal.pone.0189933 CrossRefGoogle Scholar
  41. 41.
    Dimitrova A, de Greiff A, Schoch B, Gerwig M, Frings M, Gizewski ER, Timmann D (2006) Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI. Brain Res Bull 71(1–3):233–241.  https://doi.org/10.1016/j.brainresbull.2006.09.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sirio Cocozza
    • 1
    Email author
  • Giuseppe Pontillo
    • 1
  • Roberta Lanzillo
    • 2
  • Camilla Russo
    • 1
  • Maria Petracca
    • 3
  • Martina Di Stasi
    • 1
  • Chiara Paolella
    • 1
  • Elena Augusta Vola
    • 1
  • Chiara Criscuolo
    • 2
  • Marcello Moccia
    • 2
  • Anna Lamberti
    • 2
  • Serena Monti
    • 4
  • Vincenzo Brescia Morra
    • 2
  • Andrea Elefante
    • 1
  • Giuseppe Palma
    • 5
  • Enrico Tedeschi
    • 1
  • Arturo Brunetti
    • 1
  1. 1.Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Neurosciences and Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
  3. 3.Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.IRCCS SDNNaplesItaly
  5. 5.Institute of Biostructure and BioimagingNational Research CouncilNaplesItaly

Personalised recommendations