Advertisement

Neuroradiology

, Volume 59, Issue 12, pp 1193–1202 | Cite as

High-resolution vessel wall MRI for the evaluation of intracranial atherosclerotic disease

  • Adam de Havenon
  • Mahmud Mossa-Basha
  • Lubdha Shah
  • Seong-Eun Kim
  • Min Park
  • Dennis Parker
  • J. Scott McNally
Review

Abstract

High-resolution vessel wall MRI (vwMRI) of the intracranial arteries is an emerging diagnostic imaging technique with the goal of evaluating vascular pathology. vwMRI sequences have high spatial resolution and directly image the vessel wall by suppressing blood signal. With vwMRI, it is possible to identify distinct morphologic and enhancement patterns of atherosclerosis that can provide important information about stroke etiology and recurrence risk. We present a review of vwMRI research in relation to intracranial atherosclerosis, with a focus on the relationship between ischemic stroke and atherosclerotic plaque T1 post-contrast enhancement or plaque/vessel wall morphology. The goal of this review is to provide readers with the most current understanding of the reliability, incidence, and importance of specific vwMRI findings in intracranial atherosclerosis, to guide their interpretation of vwMRI research, and help inform clinical interpretation of vwMRI. We will also provide a translational perspective on the existing vwMRI literature and insight into future vwMRI research questions and objectives. With increased use of high field strength MRI, powerful gradients, and improved pulse sequences, vwMRI will become standard-of-care in the diagnosis and prognosis of patients with cerebrovascular disease, making a firm grasp of its strengths and weakness important for neuroimagers.

Keywords

High-resolution MRI Vessel wall MRI Intracranial atherosclerosis Ischemic stroke 

Abbreviations

CSF

Cerebrospinal fluid

CTA

Computed tomography angiography

DANTE

Delay alternating with nutation for tailored excitation

DWI

Diffusion-weighted imaging

ICA

Internal carotid artery

IPH

Intraplaque hemorrhage

vwMRI

Vessel wall MRI

MCA

Middle cerebral artery

MPRAGE

Magnetization-prepared rapid gradient-echo

MRA

Magnetic resonance angiography

MSDE

Motion sensitized driven equilibrium

PD

Proton density

TIA

Transient ischemic attack

TOF

Time-of-flight

VRFA

Variable refocusing flip angle

Notes

Compliance with ethical standards

Funding

The study was funded by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number KL2TR001065 (AdH).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.

References

  1. 1.
    Suri MFK, Johnston SC (2009) Epidemiology of intracranial stenosis. J Neuroimaging Off J Am Soc Neuroimaging 19(Suppl 1):11S–16SCrossRefGoogle Scholar
  2. 2.
    Holmstedt CA, Turan TN, Chimowitz MI (2013) Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol 12:1106–1114CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hong K-S, Yegiaian S, Lee M, Lee J, Saver JL (2011) Declining stroke and vascular event recurrence rates in secondary prevention trials over the past 50 years and consequences for current trial design. Circulation 123:2111–2119CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chaturvedi S, Sacco RL (2015) How recent data have impacted the treatment of internal carotid artery stenosis. J Am Coll Cardiol 65:1134–1143CrossRefPubMedGoogle Scholar
  5. 5.
    Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR et al (2005) Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 352:1305–1316CrossRefPubMedGoogle Scholar
  6. 6.
    Bang OY (2014) Intracranial atherosclerosis: current understanding and perspectives. J Stroke 16:27–35CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gao T, Yu W, Liu C. Mechanisms of ischemic stroke in patients with intracranial atherosclerosis: a high-resolution magnetic resonance imaging study. Exp Ther Med. [Internet]. 2014 [cited 2015 Jan 27]; Available from: http://www.spandidos-publications.com/10.3892/etm.2014.1600.
  8. 8.
    Mossa-Basha M, Hwang WD, De Havenon A, Hippe D, Balu N, Becker KJ et al (2015) Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke J Cereb Circ 46:1567–1573CrossRefGoogle Scholar
  9. 9.
    Mandell DM, Matouk CC, Farb RI, Krings T, Agid R, terBrugge K et al (2012) Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis preliminary results. Stroke 43:860–862CrossRefPubMedGoogle Scholar
  10. 10.
    Obusez EC, Hui F, Hajj-Ali RA, Cerejo R, Calabrese LH, Hammad T et al (2014) High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol 35:1527–1532CrossRefPubMedGoogle Scholar
  11. 11.
    de Havenon A, Chung L, Park M, Mossa-Basha M. Intracranial vessel wall MRI: a review of current indications and future applications. Neurovascular Imaging. 2016;2.Google Scholar
  12. 12.
    de Havenon A, Yuan C, Tirschwell D, Hatsukami T, Anzai Y, Becker K et al (2015) Nonstenotic culprit plaque: the utility of high-resolution vessel wall MRI of intracranial vessels after ischemic stroke. Case Rep Radiol 2015:e356582Google Scholar
  13. 13.
    Hui FK, Zhu X, Jones SE, Uchino K, Bullen JA, Hussain MS et al (2015) Early experience in high-resolution MRI for large vessel occlusions. J Neurointerventional Surg 7:509–516CrossRefGoogle Scholar
  14. 14.
    Kim SM, Ryu C-W, Jahng G-H, Kim EJ, Choi WS (2014) Two different morphologies of chronic unilateral middle cerebral artery occlusion: evaluation using high-resolution MRI. J Neuroimaging Off J Am Soc Neuroimaging 24:460–466CrossRefGoogle Scholar
  15. 15.
    Qiao Y, Steinman DA, Qin Q, Etesami M, Schär M, Astor BC et al (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 tesla. J Magn Reson Imaging JMRI 34:22–30CrossRefPubMedGoogle Scholar
  16. 16.
    Jain K (1964) Some observations on the anatomy of the middle cerebral artery. Can J Surg 7:134–139PubMedGoogle Scholar
  17. 17.
    Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. Am J Neuroradiol [Internet]. 2016 [cited 2016 Aug 7]; Available from: http://www.ajnr.org/content/early/2016/07/28/ajnr.A4893.
  18. 18.
    Franke P, Markl M, Heinzelmann S, Vaith P, Bürk J, Langer M et al (2014) Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T. Eur J Radiol 83:1875–1880CrossRefPubMedGoogle Scholar
  19. 19.
    Qiao Y, Zeiler SR, Mirbagheri S, Leigh R, Urrutia V, Wityk R et al (2014) Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 271:534–542CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Crowe LA, Gatehouse P, Yang GZ, Mohiaddin RH, Varghese A, Charrier C et al (2003) Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging JMRI 17:572–580CrossRefPubMedGoogle Scholar
  21. 21.
    Fan Z, Zhang Z, Chung Y-C, Weale P, Zuehlsdorff S, Carr J et al (2010) Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging JMRI 31:645–654CrossRefPubMedGoogle Scholar
  22. 22.
    Natori T, Sasaki M, Miyoshi M, Ohba H, Katsura N, Yamaguchi M et al (2014) Evaluating middle cerebral artery atherosclerotic lesions in acute ischemic stroke using magnetic resonance T1-weighted 3-dimensional vessel wall imaging. J Stroke Cerebrovasc Dis 23:706–711CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J, Helle M, Zhou Z, Börnert P, Hatsukami TS, Yuan C. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2015.Google Scholar
  24. 24.
    Zhu C, Graves MJ, Yuan J, Sadat U, Gillard JH, Patterson AJ (2014) Optimization of improved motion-sensitized driven-equilibrium (iMSDE) blood suppression for carotid artery wall imaging. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 16:61Google Scholar
  25. 25.
    Busse RF, Brau ACS, Vu A, Michelich CR, Bayram E, Kijowski R et al (2008) Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 60:640–649CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang Y, Liu F, Xu W, Crozier S (2015) Compressed sensing MRI via two-stage reconstruction. IEEE Trans Biomed Eng 62:110–118CrossRefPubMedGoogle Scholar
  27. 27.
    Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J et al (2002) Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15:62–67CrossRefPubMedGoogle Scholar
  28. 28.
    Millon A, Boussel L, Brevet M, Mathevet J-L, Canet-Soulas E, Mory C et al (2012) Clinical and histological significance of gadolinium enhancement in carotid atherosclerotic plaque. Stroke J Cereb Circ 43:3023–3028CrossRefGoogle Scholar
  29. 29.
    Varma N, Hinojar R, D’Cruz D, Arroyo Ucar E, Indermuehle A, Peel S et al (2014) Coronary vessel wall contrast enhancement imaging as a potential direct marker of coronary involvement: integration of findings from CAD and SLE patients. JACC Cardiovasc Imaging 7:762–770CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McCarthy MJ, Loftus IM, Thompson MM, Jones L, London NJ, Bell PR et al (1999) Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 30:261–268CrossRefPubMedGoogle Scholar
  31. 31.
    Portanova A, Hakakian N, Mikulis DJ, Virmani R, Abdalla WMA, Wasserman BA (2013) Intracranial vasa vasorum: insights and implications for imaging. Radiology 267:667–679CrossRefPubMedGoogle Scholar
  32. 32.
    Labadzhyan A, Csiba L, Narula N, Zhou J, Narula J, Fisher M (2011) Histopathologic evaluation of basilar artery atherosclerosis. J Neurol Sci 307:97–99CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hilgendorf I, Swirski FK, Robbins CS. Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;ATVBAHA.114.303565.Google Scholar
  34. 34.
    Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gupta A, Baradaran H, Al-Dasuqi K, Knight-Greenfield A, Giambrone AE, Delgado D et al (2016) Gadolinium enhancement in intracranial atherosclerotic plaque and ischemic stroke: a systematic review and meta-analysis. J Am Heart Assoc 5:e003816CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vakil P, Vranic J, Hurley MC, Bernstein RA, Korutz AW, Habib A et al (2013) T1 gadolinium enhancement of intracranial atherosclerotic plaques associated with symptomatic ischemic presentations. AJNR Am J Neuroradiol 34:2252–2258CrossRefPubMedGoogle Scholar
  37. 37.
    Dieleman N, Yang W, Abrigo JM, Chu WCW, van der Kolk AG, Siero JCW et al (2016) Magnetic resonance imaging of plaque morphology, burden, and distribution in patients with symptomatic middle cerebral artery stenosis. Stroke 47:1797–1802CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Skarpathiotakis M, Mandell DM, Swartz RH, Tomlinson G, Mikulis DJ (2013) Intracranial atherosclerotic plaque enhancement in patients with ischemic stroke. Am J Neuroradiol 34:299–304CrossRefPubMedGoogle Scholar
  39. 39.
    Sun J, Song Y, Chen H, Kerwin WS, Hippe DS, Dong L et al (2013) Adventitial perfusion and intraplaque hemorrhage. Stroke 44:1031–1036CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chen H, Wu T, Kerwin WS, Yuan C (2013) Atherosclerotic plaque inflammation quantification using dynamic contrast-enhanced (DCE) MRI. Quant Imaging Med Surg 3:298–301PubMedPubMedCentralGoogle Scholar
  41. 41.
    Klein IF, Lavallée PC, Mazighi M, Schouman-Claeys E, Labreuche J, Amarenco P (2010) Basilar artery atherosclerotic plaques in paramedian and lacunar pontine infarctions: a high-resolution MRI study. Stroke J Cereb Circ 41:1405–1409CrossRefGoogle Scholar
  42. 42.
    Takano K, Hida K, Kuwabara Y, Yoshimitsu K (2017) Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging. Eur J Radiol 86:13–19CrossRefPubMedGoogle Scholar
  43. 43.
    Kim J-M, Jung K-H, Sohn C-H, Moon J, Shin J-H, Park J et al (2016) Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence. Int J Stroke 11:171–179CrossRefPubMedGoogle Scholar
  44. 44.
    Vakil P, Elmokadem AH, Syed FH, Cantrell CG, Dehkordi FH, Carroll TJ, et al. Quantifying intracranial plaque permeability with dynamic contrast-enhanced MRI: a pilot study. Am J Neuroradiol. [Internet]. 2016 [cited 2017 Aug 20]; Available from: http://www.ajnr.org/content/early/2016/11/17/ajnr.A4998.
  45. 45.
    Ryu C-W, Jahng G-H, Kim E-J, Choi W-S, Yang D-M (2009) High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis Basel Switz 27:433–442CrossRefGoogle Scholar
  46. 46.
    Li M, Xu W, Song L, Feng F, You H, Ni J et al (2009) Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3 T. Atherosclerosis 204:447–452CrossRefPubMedGoogle Scholar
  47. 47.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis a report from the committee on vascular lesions of the council on arteriosclerosis. Am Heart Assoc Circ 92:1355–1374Google Scholar
  48. 48.
    Kim YS, Lim S-H, Oh K-W, Kim JY, Koh S-H, Kim J et al (2012) The advantage of high-resolution MRI in evaluating basilar plaques: a comparison study with MRA. Atherosclerosis 224:411–416CrossRefPubMedGoogle Scholar
  49. 49.
    Xu W-H, Li M-L, Niu J-W, Feng F, Jin Z-Y, Gao S (2014) Intracranial artery atherosclerosis and lumen dilation in cerebral small-vessel diseases: a high-resolution MRI study. CNS Neurosci Ther 20:364–367CrossRefPubMedGoogle Scholar
  50. 50.
    Chen Z, Liu A-F, Chen H, Yuan C, He L, Zhu Y, et al. Evaluation of basilar artery atherosclerotic plaque distribution by 3D MR vessel wall imaging. J Magn Reson Imaging. 2016.Google Scholar
  51. 51.
    Ryu C-W, Kwak H-S, Jahng G-H, Lee HN (2014) High-resolution MRI of intracranial atherosclerotic disease. Neurointervention 9:9–20CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM (2001) Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol 38:297–306CrossRefPubMedGoogle Scholar
  53. 53.
    Qiao Y, Anwar Z, Intrapiromkul J, Liu L, Zeiler SR, Leigh R et al (2016) Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke J Cereb Circ 47:434–440CrossRefGoogle Scholar
  54. 54.
    Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R (2002) Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105:297–303CrossRefPubMedGoogle Scholar
  55. 55.
    Isoda K, Arakawa K, Kamezawa Y, Nishizawa K, Nishikawa K, Shibuya T et al (2001) Effect of coronary risk factors on arterial compensatory enlargement in Japanese middle-aged patients with de novo single-vessel disease—an intravascular ultrasound study. Clin Cardiol 24:443–450CrossRefPubMedGoogle Scholar
  56. 56.
    Birnbaum Y, Fishbein MC, Luo H, Nishioka T, Siegel RJ (1997) Regional remodeling of atherosclerotic arteries: a major determinant of clinical manifestations of disease. J Am Coll Cardiol 30:1149–1164CrossRefPubMedGoogle Scholar
  57. 57.
    Zhao D-L, Deng G, Xie B, Ju S, Yang M, Chen X-H et al (2015) High-resolution MRI of the vessel wall in patients with symptomatic atherosclerotic stenosis of the middle cerebral artery. J Clin Neurosci Off J Neurosurg Soc Australas 22:700–704Google Scholar
  58. 58.
    Chung GH, Kwak HS, Hwang SB, Jin GY (2012) High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis. Eur J Radiol 81:4069–4074CrossRefPubMedGoogle Scholar
  59. 59.
    Xu W-H, Li M-L, Gao S, Ni J, Zhou L-X, Yao M et al (2010) In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis 212:507–511CrossRefPubMedGoogle Scholar
  60. 60.
    Teng Z, Peng W, Zhan Q, Zhang X, Liu Q, Chen S et al (2016) An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery. Eur Radiol 26:2206–2214CrossRefPubMedGoogle Scholar
  61. 61.
    Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D et al (2013) Carotid plaque MRI and stroke risk a systematic review and meta-analysis. Stroke 44:3071–3077CrossRefPubMedGoogle Scholar
  62. 62.
    Hosseini AA, Kandiyil N, MacSweeney STS, Altaf N, Auer DP (2013) Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke. Ann Neurol 73:774–784CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yu JH, Kwak HS, Chung GH, Hwang SB, Park MS, Park SH (2015) Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque. Stroke J Cereb Circ 46:2768–2772CrossRefGoogle Scholar
  64. 64.
    Xu W-H, Li M-L, Gao S, Ni J, Yao M, Zhou L-X et al (2012) Middle cerebral artery intraplaque hemorrhage: prevalence and clinical relevance. Ann Neurol 71:195–198CrossRefPubMedGoogle Scholar
  65. 65.
    Sui B, Gao P, Lin Y, Jing L, Qin H (2015) Distribution and features of middle cerebral artery atherosclerotic plaques in symptomatic patients: a 3.0 T high-resolution MRI study. Neurol Res 37:391–396CrossRefPubMedGoogle Scholar
  66. 66.
    Saver JL (2016) Cryptogenic stroke. N Engl J Med 374:2065–2074CrossRefPubMedGoogle Scholar
  67. 67.
    Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ (Buddy), Culebras A, et al. An updated definition of stroke for the 21st century a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:2064–89Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of RadiologyUniversity of WashingtonSeattleUSA
  3. 3.Department of RadiologyUniversity of UtahSalt Lake CityUSA
  4. 4.Department of NeurosurgeryUniversity of UtahSalt Lake CityUSA

Personalised recommendations