, Volume 59, Issue 12, pp 1241–1250 | Cite as

Disease stage-dependent relationship between diffusion tensor imaging and electrophysiology of the visual system in a murine model of multiple sclerosis

  • Christopher Nishioka
  • Hsiao-Fang Liang
  • Chen-Fang Chung
  • Shu-Wei Sun
Functional Neuroradiology



Diffusion tensor imaging (DTI) is commonly used to evaluate white matter integrity in multiple sclerosis (MS), but the relationship between DTI measures and functional changes during disease remains ambiguous. Using a mouse model of MS, we tested the hypothesis that DTI measures would correlate to the visual evoked potential (VEPs) dynamically at different disease stages.


In vivo DTI, gadolinium-enhanced T1WI (Gd-T1WI) and VEPs were performed in 5 control and 25 mice after 2–12 weeks of experimental autoimmune encephalomyelitis (EAE). DTI indices, including fractional anisotropy (FA), axial and radial diffusivities (AD and RD), and Gd-T1WI enhancement, were measured in the optic nerve and tract (ON and OT), which were compared with measured VEPs.


Gd-T1WI showed a 3- to 4-fold enhancement over controls beginning after 2 weeks of EAE. Across the time course, we found progressive reductions in FA and increases in RD with increases in VEP latency and reductions in amplitude. Significant correlations between DTI (FA and RD) and VEP evolved; in control/early asymptomatic EAE mice, both FA and RD were highly correlated with VEP latency (but not amplitude), while in late EAE, both DTI indices were highly correlated with VEP amplitude (but not latency).


DTI measures FA and RD are associated to VEP latency in early stages of EAE but associated to VEP amplitude in later stages, suggesting that the patterns of DTI related to the functional decline may depend on the stage of disease progression.


Diffusion tensor imaging (DTI) Visual evoked potential (VEP) Gd-enhanced T1WI (Gd-T1WI) Experimental autoimmune encephalomyelitis (EAE) Multiple sclerosis (MS) 



Diffusion tensor imaging


Visual evoked potential


Gd-enhanced T1-weighted imaging


Experimental autoimmune encephalomyelitis


Multiple sclerosis


Fractional anisotropy


Mean diffusivity


Axial diffusivity


Radial diffusivity



We thank Dr. Wei-Xing Shi, Pharmaceutical Science, Loma Linda University, for an insightful discussion.

Compliance with ethical standards

Funding information

This work was funded in part by NIH R01 NS062830 and the National Space Biomedical Research Institute (RE03701) through the National Aeronautics and Space Administration NCC 9–58.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.


  1. 1.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. doi: 10.1002/ana.22366 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nishioka C, Poh C, Sun SW (2015) Diffusion tensor imaging reveals visual pathway damage in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 45(1):97–107. doi: 10.3233/JAD-141239 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Trip SA, Wheeler-Kingshott C, Jones SJ, Li WY, Barker GJ, Thompson AJ, Plant GT, Miller DH (2006) Optic nerve diffusion tensor imaging in optic neuritis. NeuroImage 30(2):498–505. doi: 10.1016/j.neuroimage.2005.09.024 CrossRefPubMedGoogle Scholar
  4. 4.
    Naismith RT, Xu J, Tutlam NT, Trinkaus K, Cross AH, Song SK (2010) Radial diffusivity in remote optic neuritis discriminates visual outcomes. Neurology 74(21):1702–1710. doi: 10.1212/WNL.0b013e3181e0434d CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kolbe S, Chapman C, Nguyen T, Bajraszewski C, Johnston L, Kean M, Mitchell P, Paine M, Butzkueven H, Kilpatrick T, Egan G (2009) Optic nerve diffusion changes and atrophy jointly predict visual dysfunction after optic neuritis. NeuroImage 45(3):679–686. doi: 10.1016/j.neuroimage.2008.12.047 CrossRefPubMedGoogle Scholar
  6. 6.
    Chalupa LM, Williams RW (2008) Eye, retina, and visual system of the mouse. MIT Press, CambridgeGoogle Scholar
  7. 7.
    Davies MB, Williams R, Haq N, Pelosi L, Hawkins CP (1998) MRI of optic nerve and postchiasmal visual pathways and visual evoked potentials in secondary progressive multiple sclerosis. Neuroradiology 40(12):765–770CrossRefPubMedGoogle Scholar
  8. 8.
    Sun SW, Liang HF, Schmidt RE, Cross AH, Song SK (2007) Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiol Dis 28(1):30–38. doi: 10.1016/j.nbd.2007.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun SW, Liang HF, Cross AH, Song SK (2008) Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. NeuroImage 40(1):1–10. doi: 10.1016/j.neuroimage.2007.11.049 CrossRefPubMedGoogle Scholar
  10. 10.
    Sun SW, Liang HF, Mei J, Xu D, Shi WX (2014) In vivo diffusion tensor imaging of amyloid-beta-induced white matter damage in mice. J Alzheimers Dis 38(1):93–101. doi: 10.3233/JAD-130236 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cross AH, Misko TP, Lin RF, Hickey WF, Trotter JL, Tilton RG (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93(6):2684–2690. doi: 10.1172/JCI117282 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cross AH, Girard TJ, Giacoletto KS, Evans RJ, Keeling RM, Lin RF, Trotter JL, Karr RW (1995) Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-fc supports a key role for CD28 costimulation. J Clin Invest 95(6):2783–2789CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cross AH, San M, Keeling RM, Karr RW (1999) CTLA-4-Fc treatment of ongoing EAE improves recovery, but has no effect upon relapse rate. Implications for the mechanisms involved in disease perpetuation. J Neuroimmunol 96(2):144–147CrossRefPubMedGoogle Scholar
  14. 14.
    Kerlero de Rosbo N, Mendel I, Ben-Nun A (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25(4):985–993CrossRefPubMedGoogle Scholar
  15. 15.
    Lyons JA, San M, Happ MP, Cross AH (1999) B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 29(11):3432–3439CrossRefPubMedGoogle Scholar
  16. 16.
    Hasan KM, Narayana PA (2003) Computation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: theoretical analysis and validation. Magn Reson Med 50(3):589–598. doi: 10.1002/mrm.10552 CrossRefPubMedGoogle Scholar
  17. 17.
    Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, Comi G, Ader HJ, Losseff N, Valk J (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069CrossRefPubMedGoogle Scholar
  18. 18.
    Miller DH, Barkhof F, Nauta JJ (1993) Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain 116(Pt 5):1077–1094CrossRefPubMedGoogle Scholar
  19. 19.
    Sormani MP, Bruzzi P (2013) MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol 12(7):669–676. doi: 10.1016/S1474-4422(13)70103-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Dubois J, Dehaene-Lambertz G, Soares C, Cointepas Y, Le Bihan D, Hertz-Pannier L (2008) Microstructural correlates of infant functional development: example of the visual pathways. J Neurosci 28(8):1943–1948. doi: 10.1523/JNEUROSCI.5145-07.2008 CrossRefPubMedGoogle Scholar
  21. 21.
    Tsuneishi S, Casaer P (1997) Stepwise decrease in VEP latencies and the process of myelination in the human visual pathway. Brain and Development 19(8):547–551CrossRefPubMedGoogle Scholar
  22. 22.
    You Y, Klistorner A, Thie J, Graham SL (2011) Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci 52(9):6911–6918. doi: 10.1167/iovs.11-7434 CrossRefPubMedGoogle Scholar
  23. 23.
    Sun SW, Liang HF, Trinkaus K, Cross AH, Armstrong RC, Song SK (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55(2):302–308. doi: 10.1002/mrm.20774 CrossRefPubMedGoogle Scholar
  24. 24.
    Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26(1):132–140. doi: 10.1016/j.neuroimage.2005.01.028 CrossRefPubMedGoogle Scholar
  25. 25.
    Craner MJ, Lo AC, Black JA, Waxman SG (2003) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126(Pt 7):1552–1561. doi: 10.1093/brain/awg153 CrossRefPubMedGoogle Scholar
  26. 26.
    Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197(9):1073–1081. doi: 10.1084/jem.20021603 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu J, Sun SW, Naismith RT, Snyder AZ, Cross AH, Song SK (2008) Assessing optic nerve pathology with diffusion MRI: from mouse to human. NMR Biomed 21(9):928–940. doi: 10.1002/nbm.1307 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schmierer K, Wheeler-Kingshott CA, Boulby PA, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. NeuroImage 35(2):467–477. doi: 10.1016/j.neuroimage.2006.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schmierer K, Wheeler-Kingshott CA, Tozer DJ, Boulby PA, Parkes HG, Yousry TA, Scaravilli F, Barker GJ, Tofts PS, Miller DH (2008) Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. Magn Reson Med 59(2):268–277. doi: 10.1002/mrm.21487 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, Song SK, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage 55(4):1454–1460. doi: 10.1016/j.neuroimage.2011.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zollinger LV, Kim TH, Hill K, Jeong EK, Rose JW (2011) Using diffusion tensor imaging and immunofluorescent assay to evaluate the pathology of multiple sclerosis. J Magn Reson Imaging 33(3):557–564. doi: 10.1002/jmri.22502 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29(9):2805–2813. doi: 10.1523/JNEUROSCI.4605-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Budde MD, Kim JH, Liang HF, Russell JH, Cross AH, Song SK (2008) Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR Biomed 21(6):589–597. doi: 10.1002/nbm.1229 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sun SW, Liang HF, Xie M, Oyoyo U, Lee A (2009) Fixation, not death, reduces sensitivity of DTI in detecting optic nerve damage. NeuroImage 44(3):611–619. doi: 10.1016/j.neuroimage.2008.10.032 CrossRefPubMedGoogle Scholar
  35. 35.
    Lobsien D, Ettrich B, Sotiriou K, Classen J, Then Bergh F, Hoffmann KT (2014) Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis. AJNR Am J Neuroradiol 35(11):2076–2081. doi: 10.3174/ajnr.A4034 CrossRefPubMedGoogle Scholar
  36. 36.
    Santangelo R, Castoldi V, Camaleonti L, Cursi M, Dina G, Comi G, Quattrini A, Chaabane L, Leocani L (2015) Visual evoked potentials and MRI in monitoring optic nerve involvement in a relapsing remitting model of EAE. Clin Neurophysiol 126(1):e9. doi: 10.1016/j.clinph.2014.10.054
  37. 37.
    Xu D, Liang HF, Shi W, Sun SW (2011) Correlation between DTI and visual evoked potential in mice with optic neuritis. 19th Annual Meeting of ISMRM-ESMRMB, Montreal, p 2309Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Christopher Nishioka
    • 1
    • 2
  • Hsiao-Fang Liang
    • 1
    • 3
  • Chen-Fang Chung
    • 1
  • Shu-Wei Sun
    • 1
    • 2
    • 3
  1. 1.Basic Science, School of MedicineLoma Linda UniversityLoma LindaUSA
  2. 2.Neuroscience Graduate ProgramUniversity of CaliforniaRiversideUSA
  3. 3.Pharmaceutical Science, School of PharmacyLoma Linda UniversityLoma LindaUSA

Personalised recommendations