Advertisement

Neuroradiology

, Volume 59, Issue 8, pp 727–736 | Cite as

Cost-effectiveness analysis of a non-contrast screening MRI protocol for vestibular schwannoma in patients with asymmetric sensorineural hearing loss

  • Matthew G. Crowson
  • Daniel J. Rocke
  • Jenny K. Hoang
  • Jane L. Weissman
  • David M. Kaylie
Diagnostic Neuroradiology

Abstract

Purpose

We aimed to determine if a non-contrast screening MRI is cost-effective compared to a full MRI protocol with contrast for the evaluation of vestibular schwannomas.

Methods

A decision tree was constructed to evaluate full MRI and screening MRI strategies for patients with asymmetric sensorineural hearing loss. If a patient were to have a positive screening MRI, s/he received a full MRI. Vestibular schwannoma prevalence, MRI specificity and sensitivity, and gadolinium anaphylaxis incidence were obtained through literature review. Institutional charge data were obtained using representative patient cohorts. One-way and probabilistic sensitivity analyses were completed to determine CE model threshold points for MRI performance characteristics and charges.

Results

The mean charge for a full MRI with contrast was significantly higher than a screening MRI ($4089 ± 1086 versus $2872 ± 741; p < 0.05). The screening MRI protocol was more cost-effective than a full MRI protocol with a willingness-to-pay from $0 to 20,000 USD. Sensitivity analyses determined that the screening protocol dominated when the screening MRI charge was less than $4678, and the imaging specificity exceeded 78.2%. The screening MRI protocol also dominated when vestibular schwannoma prevalence was varied between 0 and 1000 in 10,000 people.

Conclusion

A screening MRI protocol is more cost-effective than a full MRI with contrast in the diagnostic evaluation of a vestibular schwannoma. A screening MRI likely also confers benefits of shorter exam time and no contrast use. Further investigation is needed to confirm the relative performance of screening protocols for vestibular schwannomas.

Keywords

MRI Cerebellopontine angle Vestibular schwannoma Asymmetric sensorineural hearing loss 

Notes

Acknowledgements

The authors would like to thank Duke Financial Services for providing charge data and interpretations.

Compliance with ethical standards

Funding

No funding was received for this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Lin D, Hegarty JL, Fischbein NJ, Jackler RK (2005) The prevalence of “incidental” acoustic neuroma. Arch Otolaryngol Head Neck Surg 131:241–244. doi: 10.1001/archotol.131.3.241 CrossRefPubMedGoogle Scholar
  2. 2.
    Gal TJ, Shinn J, Huang B (2010) Current epidemiology and management trends in acoustic neuroma. Otolaryngol - Head Neck Surg (United States) 142:677–681. doi: 10.1016/j.otohns.2010.01.037 CrossRefGoogle Scholar
  3. 3.
    Anderson TD, Loevner LA, Bigelow DC, Mirza N (2000) Prevalence of unsuspected acoustic neuroma found by magnetic resonance imaging. Otolaryngol Head Neck Surg 122:643–646. doi: 10.1067/mhn.2000.105716 CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt RF, Boghani Z, Choudhry OJ et al (2012) Incidental vestibular schwannomas: a review of prevalence, growth rate, and management challenges. Neurosurg Focus 33:E4. doi: 10.3171/2012.7.FOCUS12186 CrossRefPubMedGoogle Scholar
  5. 5.
    National Guideline Clearinghouse (NGC) (2013) ACR appropriateness criteria: hearing loss and/or vertigo. In: Agency Healthc. Res. Qual. https://www.guideline.gov/summaries/summary/47674? Accessed 21 Jul 2016
  6. 6.
    Erdogan N, Altay C, Akay E et al (2013) MRI assessment of internal acoustic canal variations using 3D-FIESTA sequences. Eur Arch Oto-Rhino-Laryngology 270:469–475. doi: 10.1007/s00405-012-1994-7 CrossRefGoogle Scholar
  7. 7.
    Davagnanam I, Chavda SV (2008) Identification of the normal jugular foramen and lower cranial nerve anatomy: contrast-enhanced 3D fast imaging employing steady-state acquisition MR imaging. AJNR Am J Neuroradiol 29:574–576. doi: 10.3174/ajnr.A0860 CrossRefPubMedGoogle Scholar
  8. 8.
    Hatipoǧlu HG, Durakoǧlugil T, Ciliz D, Yüksel E (2007) Comparison of FSE T2W and 3D FIESTA sequences in the evaluation of posterior fossa cranial nerves with MR cisternography. Diagnostic Interv Radiol 13:56–60Google Scholar
  9. 9.
    Mikami T, Minamida Y, Yamaki T et al (2005) Cranial nerve assessment in posterior fossa tumors with fast imaging employing steady-state acquisition (FIESTA). Neurosurg rev 28:261–266. doi: 10.1007/s10143-005-0394-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Schmalbrock P, Chakeres DW, Monroe JW et al (1999) Assessment of internal auditory canal tumors: a comparison of contrast-enhanced T1-weighted and steady-state T2-weighted gradient-echo MR imaging. Am J Neuroradiol 20:1207–1213PubMedGoogle Scholar
  11. 11.
    Sheth S, Branstetter BF, Escott EJ (2009) Appearance of normal cranial nerves on steady-state free precession MR images. Radiographics 29:1045–1055. doi: 10.1148/rg.294085743 CrossRefPubMedGoogle Scholar
  12. 12.
    Hermans R, Van der Goten A, De Foer B, Baert AL (1997) MRI screening for acoustic neuroma without gadolinium: value of 3DFT-CISS sequence. Neuroradiology 39:593–598. doi: 10.1007/s002340050474 CrossRefPubMedGoogle Scholar
  13. 13.
    Kocaoglu M, Bulakbasi N, Ucoz T et al (2003) Comparison of contrast-enhanced T1-weighted and 3D constructive interference in steady state images for predicting outcome after hearing-preservation surgery for vestibular schwannoma. Neuroradiology 45:476–481. doi: 10.1007/s00234-003-1006-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Oh JH, Chung JH, Min HJ et al (2013) Clinical application of 3D-FIESTA image in patients with unilateral inner ear symptom. Korean J Audiol 17:111–117. doi: 10.7874/kja.2013.17.3.111 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sriskandan N, Connor SEJ (2011) The role of radiology in the diagnosis and management of vestibular schwannoma. Clin Radiol 66:357–365. doi: 10.1016/j.crad.2010.10.016 CrossRefPubMedGoogle Scholar
  16. 16.
    Ryan M, Weissman JL, Kaylie D (2015) Is gadolinium contrast enhancement necessary in screening MRI for asymmetric sensorineural hearing loss? Laryngoscope 125:783–784. doi: 10.1002/lary.24871 CrossRefPubMedGoogle Scholar
  17. 17.
    Murphy MR, Selesnick SH (2002) Cost-effective diagnosis of acoustic neuromas: a philosophical, macroeconomic, and technological decision. Otolaryngol - Head Neck Surg 127:253–259. doi: 10.1067/mhn.2002.128071 CrossRefPubMedGoogle Scholar
  18. 18.
    Renowden SA, Anslow P (1993) The effective use of magnetic resonance imaging in the diagnosis of acoustic neuromas. Clin Radiol 48:25–28CrossRefPubMedGoogle Scholar
  19. 19.
    Patton DD, Woolfenden JM (1989) A utility-based model for comparing the cost-effectiveness of diagnostic studies. Investig Radiol 24:263–271CrossRefGoogle Scholar
  20. 20.
    Haque S, Hossain A, Quddus M, Jahan M (2011) Role of MRI in the evaluation of acoustic schwannoma and its comparison to histopathological findings. Bangladesh Med Res Counc Bull 37:92–96. doi: 10.3329/bmrcb.v37i3.9120 CrossRefPubMedGoogle Scholar
  21. 21.
    Sharma A, Viets R, Parsons MS et al (2014) A two-tiered approach to MRI for hearing loss: incremental cost of a comprehensive MRI over high-resolution T2-weighted imaging. Am J Roentgenol 202:136–144. doi: 10.2214/AJR.13.10610 CrossRefGoogle Scholar
  22. 22.
    Singh K, Singh MP, Thukral C et al (2015) Role of magnetic resonance imaging in evaluation of cerebellopontine angle schwannomas. Indian J Otolaryngol Head Neck Surg 67:21–27. doi: 10.1007/s12070-014-0736-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Shelton C, Harnsberger HR, Allen R, King B (1996) Fast spin echo magnetic resonance imaging: clinical application in screening for acoustic neuroma. Otolaryngol Neck Surg 114:71–76CrossRefGoogle Scholar
  24. 24.
    Stuckey SL, Harris AJ, Mannolini SM (1996) Detection of acoustic schwannoma: use of constructive interference in the steady state three-dimensional MR. Am J Neuroradiol 17:1219–1228PubMedGoogle Scholar
  25. 25.
    Goebell E, Ries T, Kucinski T et al (2005) Screening for cerebellopontine angle tumors: is a CISS sufficient? Eur Radiol 15:286–291. doi: 10.1007/s00330-004-2579-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Gauden AJ, Phal PM, Drummond KJ (2010) MRI safety; nephrogenic systemic fibrosis and other risks. J Clin Neurosci 17:1097–1104. doi: 10.1016/j.jocn.2010.01.016 CrossRefPubMedGoogle Scholar
  27. 27.
    Li A, Wong CS, Wong MK et al (2006) Acute adverse reactions to magnetic resonance contrast media—gadolinium chelates. Br J Radiol 79:368–371. doi: 10.1259/bjr/88469693 CrossRefPubMedGoogle Scholar
  28. 28.
    Caro JJ, Trindade E, McGregor M (1992) The cost-effectiveness of replacing high-osmolality with low-osmolality contrast media. AJR am J Roentgenol 159:869–874. doi: 10.2214/ajr.159.4.1529856 CrossRefPubMedGoogle Scholar
  29. 29.
    Dunn JD, Sclar DA (2014) Anaphylaxis: a payor’s perspective on epinephrine autoinjectors. Am J med 127:S45–S50. doi: 10.1016/j.amjmed.2013.09.013 CrossRefPubMedGoogle Scholar
  30. 30.
    Patel DA, Holdford DA, Edwards E, Carroll NV (2011) Estimating the economic burden of food-induced allergic reactions and anaphylaxis in the United States. J Allergy Clin Immunol 128:110–115. doi: 10.1016/j.jaci.2011.03.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Gray AM, Clarke PM, Wolstenholme JL, Wordsworth S (2010) Applied methods of cost-effectiveness analysis in health careGoogle Scholar
  32. 32.
    Abele TA, Besachio DA, Quigley EP et al (2014) Diagnostic accuracy of screening MR imaging using unenhanced axial CISS and coronal T2WI for detection of small internal auditory canal lesions. AJNR Am J Neuroradiol 35:2366–2370. doi: 10.3174/ajnr.A4041 CrossRefPubMedGoogle Scholar
  33. 33.
    Shigematsu Y, Korogi Y, Hirai T et al (1999) Contrast-enhanced CISS MRI of vestibular schwannomas: phantom and clinical studies. J Comput Assist Tomogr 23:224–231. doi: 10.1097/00004728-199903000-00010 CrossRefPubMedGoogle Scholar
  34. 34.
    Verma S, Anthony R, Tsai V et al (2009) Evaluation of cost effectiveness for conservative and active management strategies for acoustic neuroma. Clin Otolaryngol 34:438–446. doi: 10.1111/j.1749-4486.2009.02016.x CrossRefPubMedGoogle Scholar
  35. 35.
    Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10:477–484. doi: 10.1002/(SICI)1522-2586(199909)10:3<477::AID-JMRI33>3.0.CO;2-E CrossRefPubMedGoogle Scholar
  36. 36.
    Shellock FG, Spinazzi A (2008) MRI safety update 2008: part 2, screening patients for MRI. Am J Roentgenol 191:1140–1149. doi: 10.2214/AJR.08.1038.2 CrossRefGoogle Scholar
  37. 37.
    Shellock FG, Spinazzi A (2008) MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. Am J Roentgenol 191:1129–1139. doi: 10.2214/AJR.08.1038.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Matthew G. Crowson
    • 1
  • Daniel J. Rocke
    • 1
  • Jenny K. Hoang
    • 2
  • Jane L. Weissman
    • 3
  • David M. Kaylie
    • 1
  1. 1.Division of Otolaryngology-Head & Neck SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of RadiologyDuke University Medical CenterDurhamUSA
  3. 3.Professor Emerita of Diagnostic RadiologyOregon Health Sciences UniversityPortlandUSA

Personalised recommendations