, Volume 59, Issue 1, pp 31–41 | Cite as

Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

  • Eva BültmannEmail author
  • Thomas Nägele
  • Heinrich Lanfermann
  • Uwe Klose
Paediatric Neuroradiology



We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging.


From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months–20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum.


The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu.


CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic.


Proton MR spectroscopy Brain metabolite concentrations Brain maturation 



We would like to thank the Departments of Neuropediatrics, Developmental Neurology and Social Pediatrics of the University of Tübingen (Medical Director Prof. I.Krägeloh-Mann) for helpful collaboration and clinical support.

Compliance with ethical standards

We declare that this retrospective study was approved by the ethics committee of the University of Tübingen and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that this manuscript does not contain clinical studies or patient data.

Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221(2):349–358. doi: 10.1148/radiol.2212001702 CrossRefPubMedGoogle Scholar
  2. 2.
    Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54(3):255–266CrossRefPubMedGoogle Scholar
  3. 3.
    Autti T, Raininko R, Vanhanen SL, Kallio M, Santavuori P (1994) MRI of the normal brain from early childhood to middle age. II. Age dependence of signal intensity changes on T2-weighted images. Neuroradiology 36(8):649–651CrossRefPubMedGoogle Scholar
  4. 4.
    Bruhn H, Kruse B, Korenke GC, Hanefeld F, Hanicke W, Merboldt KD, Frahm J (1992) Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 16(3):335–344CrossRefPubMedGoogle Scholar
  5. 5.
    Kimura H, Fujii Y, Itoh S, Matsuda T, Iwasaki T, Maeda M, Konishi Y, Ishii Y (1995) Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology 194(2):483–489. doi: 10.1148/radiology.194.2.7529934 CrossRefPubMedGoogle Scholar
  6. 6.
    Kreis R, Ernst T, Ross BD (1993) Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 30(4):424–437CrossRefPubMedGoogle Scholar
  7. 7.
    Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46(4):474–485. doi: 10.1203/00006450-199910000-00019 CrossRefPubMedGoogle Scholar
  8. 8.
    van der Knaap MS, van der Grond J, van Rijen PC, Faber JA, Valk J, Willemse K (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176(2):509–515. doi: 10.1148/radiology.176.2.2164237 CrossRefPubMedGoogle Scholar
  9. 9.
    Leclerc X, Huisman TA, Sorensen AG (2002) The potential of proton magnetic resonance spectroscopy ((1)H-MRS) in the diagnosis and management of patients with brain tumors. Curr Opin Oncol 14(3):292–298CrossRefPubMedGoogle Scholar
  10. 10.
    Nelson SJ (2003) Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2(5):497–507PubMedGoogle Scholar
  11. 11.
    Verbruggen KT, Maurits NM, Meiners LC, Brouwer OF, van Spronsen FJ, Sijens PE (2009) Quantitative multivoxel proton spectroscopy of the brain in developmental delay. Journal of magnetic resonance imaging : JMRI 30(4):716–721. doi: 10.1002/jmri.21909 CrossRefPubMedGoogle Scholar
  12. 12.
    Baierl P, Forster C, Fendel H, Naegele M, Fink U, Kenn W (1988) Magnetic resonance imaging of normal and pathological white matter maturation. Pediatr Radiol 18(3):183–189CrossRefPubMedGoogle Scholar
  13. 13.
    McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987) Developmental features of the neonatal brain: MR imaging. Part I Gray-white matter differentiation and myelination Radiology 162(1 Pt 1):223–229. doi: 10.1148/radiology.162.1.3786767 PubMedGoogle Scholar
  14. 14.
    Girard N, Confort-Gouny S, Schneider J, Barberet M, Chapon F, Viola A, Pineau S, Combaz X, Cozzone P (2007) MR imaging of brain maturation. J Neuroradiol 34(5):290–310. doi: 10.1016/j.neurad.2007.07.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Lu D, Pavlakis SG, Frank Y, Bakshi S, Pahwa S, Gould RJ, Sison C, Hsu C, Lesser M, Hoberman M, Barnett T, Hyman RA (1996) Proton MR spectroscopy of the basal ganglia in healthy children and children with AIDS. Radiology 199(2):423–428. doi: 10.1148/radiology.199.2.8668788 CrossRefPubMedGoogle Scholar
  16. 16.
    Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48(6):949–958. doi: 10.1002/mrm.10304 CrossRefPubMedGoogle Scholar
  17. 17.
    Toft PB, Leth H, Lou HC, Pryds O, Henriksen O (1994) Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. Journal of magnetic resonance imaging : JMRI 4(5):674–680CrossRefPubMedGoogle Scholar
  18. 18.
    Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39(1):53–60CrossRefPubMedGoogle Scholar
  19. 19.
    Natt O, Bezkorovaynyy V, Michaelis T, Frahm J (2005) Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med 53(1):3–8. doi: 10.1002/mrm.20337 CrossRefPubMedGoogle Scholar
  20. 20.
    Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187(1):219–227. doi: 10.1148/radiology.187.1.8451417 CrossRefPubMedGoogle Scholar
  21. 21.
    Wiebenga OT, Klauser AM, Nagtegaal GJ, Schoonheim MM, Barkhof F, Geurts JJ, Pouwels PJ (2014) Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR Biomed 27(3):304–311. doi: 10.1002/nbm.3063 CrossRefPubMedGoogle Scholar
  22. 22.
    Panigrahy A, Borzage M, Bluml S (2010) Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain. Semin Perinatol 34(1):3–19. doi: 10.1053/j.semperi.2009.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hashimoto T, Tayama M, Miyazaki M, Fujii E, Harada M, Miyoshi H, Tanouchi M, Kuroda Y (1995) Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 37(5):398–405CrossRefPubMedGoogle Scholar
  24. 24.
    Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74(1):254–262CrossRefPubMedGoogle Scholar
  25. 25.
    Dezortova M, Hajek M (2008) (1)H MR spectroscopy in pediatrics. Eur J Radiol 67(2):240–249. doi: 10.1016/j.ejrad.2008.02.035 CrossRefPubMedGoogle Scholar
  26. 26.
    Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15(3–5):289–298PubMedGoogle Scholar
  27. 27.
    Mader I, Rauer S, Gall P, Klose U (2008) (1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Radiol 67(2):250–257. doi: 10.1016/j.ejrad.2008.02.033 CrossRefPubMedGoogle Scholar
  28. 28.
    Hajek M, Dezortova M (2008) Introduction to clinical in vivo MR spectroscopy. Eur J Radiol 67(2):185–193. doi: 10.1016/j.ejrad.2008.03.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Eva Bültmann
    • 1
    Email author
  • Thomas Nägele
    • 2
  • Heinrich Lanfermann
    • 1
  • Uwe Klose
    • 3
  1. 1.Institute of Diagnostic and Interventional NeuroradiologyHannover Medical SchoolHannoverGermany
  2. 2.Department of Diagnostic and Interventional Neuroradiology, Radiological University HospitalUniversity of TübingenTübingenGermany
  3. 3.Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University HospitalUniversity of TübingenTübingenGermany

Personalised recommendations