Advertisement

Neuroradiology

, Volume 58, Issue 11, pp 1153–1160 | Cite as

Basic MR sequence parameters systematically bias automated brain volume estimation

  • Sven HallerEmail author
  • Pavel Falkovskiy
  • Reto Meuli
  • Jean-Philippe Thiran
  • Gunnar Krueger
  • Karl-Olof Lovblad
  • Tobias Kober
  • Alexis Roche
  • Bénédicte Marechal
Functional Neuroradiology

Abstract

Introduction

Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results.

Methods

The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL− 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters.

Results

Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter.

Conclusion

A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4–5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results.

Keywords

MRI Volumetry Hippocampus 3D T1 

Abbreviations

AD

Alzheimer dementia

ADNI

Alzheimer Disease Neuroimaging Initiative

cGM

Cortical gray matter

FDR

False discovery rate

GM

Gray matter

LOCAL

Local imaging protocol with 1 mm iso-voxel resolution

MCI

Mild cognitive impairment

MPRAGE

Magnetization prepared rapid gradient echo

MRI

Magnetic resonance imaging

TIV

Total intracranial volume

Notes

Compliance with ethical standards

We declare that all human and animal studies have been approved by the Geneva University Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that the ethics committee waived individual patient consent.

Conflict of interest

TK, BM, GK, and AR are full-time or part-time employees of Siemens Healthcare AG.

References

  1. 1.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1(1):55–66CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell LJ, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DL, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW (2008) The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691Google Scholar
  5. 5.
    Jack CR, Bernstein MA, Borowski BJ, Gunter JL, Fox NC, Thompson PM, Schuff N, Krueger G, Killiany RJ, DeCarli CS, Dale AM, Carmichael OW, Tosun D, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative (2010) Update on the Magnetic Resonance Imaging core of the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 6(3):212–220Google Scholar
  6. 6.
    Mortamet B, Bernstein MA, Jack CR, Gunter JL, Ward C, Britson PJ, Meuli R, Thiran JP, Krueger G, Alzheimer’s DNI (2009) Automatic quality assessment in structural brain magnetic resonance imaging. Magn Reson Med 62(2):365–372CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Roche A, Ribes D, Bach-Cuadra M, Krüger G (2011) On the convergence of EM-like algorithms for image segmentation using Markov random fields. Med Image Anal 15(6):830–839CrossRefPubMedGoogle Scholar
  8. 8.
    Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Daducci A, Granziera C, Klöppel S, Maeder P, Meuli R, Krueger G, Alzheimer’s DNI (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. Neuroimage Clin 7:7–17CrossRefPubMedGoogle Scholar
  9. 9.
    Fischl B (2012) FreeSurfer. NeuroImage 62(2):774–781CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15(4):870–878CrossRefPubMedGoogle Scholar
  11. 11.
    Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, Pacheco J, Albert M, Killiany R, Blacker D, Maguire P, Rosas D, Makris N, Gollub R, Dale A, Dickerson BC, Fischl B (2009) MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage 46(1):177–192CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage 30(2):436–443CrossRefPubMedGoogle Scholar
  13. 13.
    Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartrés-Faz D, Arnold J, Benninghoff J, Wiltfang J, Roccatagliata L, Nobili F, Hensch T, Tränkner A, Schönknecht P, Leroy M, Lopes R, Bordet R, Chanoine V, Ranjeva JP, Didic M, Gros-Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Bargalló N, Blin O, Frisoni GB, PharmaCog C (2013) Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations. NeuroImage 83:472–484CrossRefPubMedGoogle Scholar
  14. 14.
    Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC (2009) Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage 44(4):1324–1333CrossRefPubMedGoogle Scholar
  15. 15.
    Kruggel F, Turner J, Muftuler LT (2010) Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. NeuroImage 49(3):2123–2133CrossRefPubMedGoogle Scholar
  16. 16.
    Morey RA, Selgrade ES, Wagner HR, Huettel SA, Wang L, McCarthy G (2010) Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp 31(11):1751–1762PubMedPubMedCentralGoogle Scholar
  17. 17.
    Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61(4):1402–1418CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Falkovskiy P, Brenner D, Feiweier T, Kannengiesser S, Maréchal B, Kober T, Roche A, Thostenson K, Meuli R, Reyes D, Stoecker T, Bernstein MA, Thiran JP, Krueger G (2015) Comparison of accelerated T1-weighted whole-brain structural-imaging protocols. NeuroImage 124(Pt A):157–167PubMedGoogle Scholar
  19. 19.
    Frankó E, Joly O, Alzheimer’s DNI (2013) Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy. PLoS One 8(8):e71354CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Chupin M, Benali H, Colliot O, Alzheimer’s DNI (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2):766–781CrossRefPubMedGoogle Scholar
  22. 22.
    Gronenschild EH, Habets P, Jacobs HI, Mengelers R, Rozendaal N, van Os J, Marcelis M (2012) The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS One 7(6):e38234CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R (2014) Reliability of brain volume measurements: a test-retest dataset. Sci Data 1140037Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sven Haller
    • 1
    • 2
    Email author
  • Pavel Falkovskiy
    • 3
    • 4
  • Reto Meuli
    • 4
  • Jean-Philippe Thiran
    • 5
  • Gunnar Krueger
    • 6
  • Karl-Olof Lovblad
    • 1
    • 7
  • Tobias Kober
    • 3
    • 5
  • Alexis Roche
    • 3
    • 4
  • Bénédicte Marechal
    • 3
    • 4
  1. 1.Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  2. 2.Affidea Centre de Diagnostique Radiologique de Carouge CDRCGenevaSwitzerland
  3. 3.Advanced Clinical Imaging TechnologySiemens Healthcare HC CEMEA SUI DI BM PILausanneSwitzerland
  4. 4.Department of RadiologyUniversity Hospital (CHUV)LausanneSwitzerland
  5. 5.LTS5, École Polytechnique Fédérale de LausanneLausanneSwitzerland
  6. 6.Siemens Medical Solutions USA, Inc.BostonUSA
  7. 7.University Hospitals of GenevaGenevaSwitzerland

Personalised recommendations