, Volume 58, Issue 4, pp 417–427 | Cite as

The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients

  • Xiaohui Zheng
  • Limin Sun
  • Dazhi Yin
  • Jie Jia
  • Zhiyong Zhao
  • Yuwei Jiang
  • Xiangmin Wang
  • Jie Wu
  • Jiayu Gong
  • Mingxia Fan
Functional Neuroradiology



It has been demonstrated that rehabilitative interventions can promote motor function recovery in stroke patients. However, little is known regarding the neural mechanisms that underlie the rehabilitation treatments. The aim of this study was to investigate the plasticity of intrinsic functional connectivity patterns that are associated with rehabilitation intervention in chronic stroke patients.


Twelve chronic stroke patients with subcortical lesions in the left motor pathway participated in a 4-week rehabilitation intervention and underwent resting-state functional magnetic resonance imaging (fMRI) scanning before and after the intervention. Both functional connectivity analyses of the ipsilesional (left) primary motor cortex (M1) and measurements of the lateralization index of the connectivity patterns were performed in both the stroke patients and healthy controls (HC).


Compared with the HC, the decreased connectivity of the ipsilesional M1 with the contralesional sensorimotor cortex (SMC), bilateral supplementary motor areas, and inferior parietal lobule due to stroke were remarkably restored after the intervention. More specifically, the lateralization index of the bilateral SMC tends to be the normal level. Moreover, comparing post- with pre-intervention, we observed significantly increased connectivity of ipsilesional M1 with the contralesional M1 and medial superior frontal gyrus (mSFG). Additionally, the index of pre-intervention connectivity with the contralesional mSFG was positively correlated with motor improvement.


The impact of rehabilitation intervention on intrinsic functional connectivity patterns throughout the brain was measurable on resting-state fMRI, and systematic assessment of resting-state functional connectivity can provide prognostic insight for later motor improvement.


Resting state Function connectivity Motor recovery Rehabilitation intervention Stroke 



This research was supported by the China National Nature Science Foundation (grant no. 81471651), the China National Nature Science Young Foundation (grant no. 81401859), the 12th Five-Year Plan supporting project of Ministry of Science and Technology of the People’s Republic of China (grant no. 2013BAI10B03), the Shanghai Zhabei District Health Bureau (grant no. 2014MS06) and the Shanghai Commission of Healthy and Family Planning (grant no. 201440634). We would like to thank all of the volunteers and stroke patients for their participation in this study.

Compliance with ethical standards

We declare that all human and animal studies have been approved by the Institutional Ethics Committee of East China Normal University, Shanghai, China, and have therefore been performed in accordance with the ethical laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

234_2016_1647_MOESM1_ESM.docx (2.4 mb)
Fig. S1 Comparison of the functional connectivity of the ipsilesional M1 between stroke patients (at both pre- and post-intervention) and HC. (DOCX 2500 kb)


  1. 1.
    Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J (1992) Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke; a J Cerebral Circ 23(8):1084–1089CrossRefGoogle Scholar
  2. 2.
    Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke; A J Cereb Circ 34(6):1553–1566. doi: 10.1161/01.str.0000071761.36075.a6 CrossRefGoogle Scholar
  3. 3.
    Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P, Manelfe C, Chollet F (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. NeuroImage 20(4):2166–2180CrossRefPubMedGoogle Scholar
  4. 4.
    Loubinoux I, Dechaumont-Palacin S, Castel-Lacanal E, De Boissezon X, Marque P, Pariente J, Albucher JF, Berry I, Chollet F (2007) Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb Cortex (New York, NY: 1991) 17(12):2980–2987. doi: 10.1093/cercor/bhm023 Google Scholar
  5. 5.
    Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 55(3):1147–1158. doi: 10.1016/j.neuroimage.2011.01.014 CrossRefPubMedGoogle Scholar
  6. 6.
    Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J, Cassol E, Chollet F (2004) A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. NeuroImage 23(3):827–839. doi: 10.1016/j.neuroimage.2004.07.058 CrossRefPubMedGoogle Scholar
  7. 7.
    Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke; A J Cereb Circ 28(12):2518–2527CrossRefGoogle Scholar
  8. 8.
    Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke; A J Cereb Circ 33(1):103–109CrossRefGoogle Scholar
  9. 9.
    Sun L, Yin D, Zhu Y, Fan M, Zang L, Wu Y, Jia J, Bai Y, Zhu B, Hu Y (2013) Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study. Neuroradiology 55(7):913–925. doi: 10.1007/s00234-013-1188-z CrossRefPubMedGoogle Scholar
  10. 10.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain : J Neurol 126(Pt 11):2476–2496. doi: 10.1093/brain/awg245 CrossRefGoogle Scholar
  11. 11.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMedGoogle Scholar
  12. 12.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853. doi: 10.1073/pnas.0601417103 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258. doi: 10.1073/pnas.0135058100 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356. doi: 10.1523/jneurosci.5587-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Park JY, Kim YH, Chang WH, Park CH, Shin YI, Kim ST, Pascual-Leone A (2014) Significance of longitudinal changes in the default-mode network for cognitive recovery after stroke. European J Neurosci 40(4):2715–2722. doi: 10.1111/ejn.12640 CrossRefGoogle Scholar
  16. 16.
    van Hees S, McMahon K, Angwin A, de Zubicaray G, Read S, Copland DA (2014) A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Hum Brain Mapp 35(8):3919–3931. doi: 10.1002/hbm.22448 CrossRefPubMedGoogle Scholar
  17. 17.
    Yin D, Song F, Xu D, Peterson BS, Sun L, Men W, Yan X, Fan M (2012) Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke. PLoS One 7(12):e52727. doi: 10.1371/journal.pone.0052727 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim YH (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke; J Cereb Circ 42(5):1357–1362. doi: 10.1161/strokeaha.110.596155 CrossRefGoogle Scholar
  19. 19.
    Golestani AM, Tymchuk S, Demchuk A, Goodyear BG (2013) Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair 27(2):153–163. doi: 10.1177/1545968312457827 CrossRefPubMedGoogle Scholar
  20. 20.
    Barzel A, Ketels G, Tetzlaff B, Kruger H, Haevernick K, Daubmann A, Wegscheider K, Scherer M (2013) Enhancing activities of daily living of chronic stroke patients in primary health care by modified constraint-induced movement therapy (HOMECIMT): study protocol for a cluster randomized controlled trial. Trials 14:334. doi: 10.1186/1745-6215-14-334 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Braun SM, Beurskens AJ, Borm PJ, Schack T, Wade DT (2006) The effects of mental practice in stroke rehabilitation: a systematic review. Arch Phys Med Rehabil 87(6):842–852. doi: 10.1016/j.apmr.2006.02.034 CrossRefPubMedGoogle Scholar
  22. 22.
    Brunnstrom S (1966) Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther 46(4):357–375PubMedGoogle Scholar
  23. 23.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  24. 24.
    Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31PubMedGoogle Scholar
  25. 25.
    Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6(9):e25031. doi: 10.1371/journal.pone.0025031 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22(7):1326–1333PubMedGoogle Scholar
  27. 27.
    Wang L, Yu C, Chen H, Qin W, He Y, Fan F, Zhang Y, Wang M, Li K, Zang Y, Woodward TS, Zhu C (2010) Dynamic functional reorganization of the motor execution network after stroke. Brain : J Neurol 133(Pt 4):1224–1238. doi: 10.1093/brain/awq043 CrossRefGoogle Scholar
  28. 28.
    Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15(4):247–262CrossRefPubMedGoogle Scholar
  29. 29.
    Tang Q, Li G, Liu T, Wang A, Feng S, Liao X, Jin Y, Guo Z, He B, McClure MA, Xing G, Mu Q (2015) Modulation of interhemispheric activation balance in motor-related areas of stroke patients with motor recovery: systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev 57:392–400. doi: 10.1016/j.neubiorev.2015.09.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Calautti C, Naccarato M, Jones PS, Sharma N, Day DD, Carpenter AT, Bullmore ET, Warburton EA, Baron JC (2007) The relationship between motor deficit and hemisphere activation balance after stroke: a 3T fMRI study. NeuroImage 34(1):322–331. doi: 10.1016/j.neuroimage.2006.08.026 CrossRefPubMedGoogle Scholar
  31. 31.
    Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke; J Cereb Circ 31(3):656–661CrossRefGoogle Scholar
  32. 32.
    Woo CW, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage 91:412–419. doi: 10.1016/j.neuroimage.2013.12.058 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DL, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67(3):365–375. doi: 10.1002/ana.21905 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke; J Cereb Circ 32(11):2534–2542CrossRefGoogle Scholar
  35. 35.
    Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain : J Neurol 129(Pt 3):791–808. doi: 10.1093/brain/awh713 CrossRefGoogle Scholar
  36. 36.
    Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26(22):6096–6102. doi: 10.1523/jneurosci.4564-05.2006 CrossRefPubMedGoogle Scholar
  37. 37.
    Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409. doi: 10.1002/ana.10848 CrossRefPubMedGoogle Scholar
  38. 38.
    Ward NS (2005) Mechanisms underlying recovery of motor function after stroke. Postgrad Med J 81(958):510–514. doi: 10.1136/pgmj.2004.030809 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56(1):171–184. doi: 10.1016/j.neuron.2007.08.023 CrossRefPubMedGoogle Scholar
  40. 40.
    Azari NP, Binkofski F, Pettigrew KD, Freund HJ, Seitz RJ (1996) Enhanced regional cerebral metabolic interactions in thalamic circuitry predicts motor recovery in hemiparetic stroke. Hum Brain Mapp 4(4):240–253. doi: 10.1002/(SICI)1097-0193(1996)4:4<240::AID-HBM2>3.0.CO;2-3 10.1002/(sici)1097-0193(1996)4:4<240::aid-hbm2>;2-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Leiguarda RC, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain : J Neurol 123(Pt 5):860–879CrossRefGoogle Scholar
  42. 42.
    Talati A, Hirsch J (2005) Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on "what," "when," and "where" related information: an fMRI study. J Cogn Neurosci 17(7):981–993. doi: 10.1162/0898929054475226 CrossRefPubMedGoogle Scholar
  43. 43.
    Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9(6):735–739CrossRefPubMedGoogle Scholar
  44. 44.
    Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci 13(4):1708–1718PubMedGoogle Scholar
  45. 45.
    He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53(6):905–918. doi: 10.1016/j.neuron.2007.02.013 CrossRefPubMedGoogle Scholar
  46. 46.
    Liu J, Qin W, Zhang J, Zhang X, Yu C (2015) Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke; J Cereb Circ 46(4):1045–1051. doi: 10.1161/strokeaha.114.007044 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiaohui Zheng
    • 1
  • Limin Sun
    • 3
  • Dazhi Yin
    • 2
  • Jie Jia
    • 3
  • Zhiyong Zhao
    • 1
  • Yuwei Jiang
    • 1
  • Xiangmin Wang
    • 1
  • Jie Wu
    • 1
  • Jiayu Gong
    • 1
  • Mingxia Fan
    • 1
  1. 1.Shanghai Key Laboratory of Magnetic ResonanceEast China Normal UniversityShanghaiChina
  2. 2.Institute of Neuroscience, Laboratory of Primate Neurobiology, Shanghai Institute for Biological SciencesChinese Academy of SciencesShanghaiChina
  3. 3.Department of Rehabilitation, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations