Advertisement

Neuroradiology

, Volume 57, Issue 11, pp 1135–1144 | Cite as

Arterial spin-labeling MR imaging of cerebral hemorrhages

  • Tomoyuki Noguchi
  • Masashi Nishihara
  • Yoshiaki Egashira
  • Shinya Azama
  • Tetsuyoshi Hirai
  • Isao Kitano
  • Yusuke Yakushiji
  • Masatou Kawashima
  • Hiroyuki Irie
Diagnostic Neuroradiology

Abstract

Introduction

The purpose of this study is to identify the characteristics of brain perfusion measured by arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cerebral hemorrhages.

Methods

Brain blood flow values (CBF-ASL values) for cerebral and cerebellar hemispheres and segmented cerebral regions were measured by ASL-MRI in 19 putaminal hemorrhage patients and 20 thalamic hemorrhage patients in acute or subacute stages. We assessed the lateralities of CBF-ASL values and the relationships between CBF-ASL values and other imaging findings and clinical manifestations.

Results

Both the 19 putaminal hemorrhage patients and the 20 thalamic hemorrhage patients had significantly low CBF-ASL values of the contralateral cerebellum in subacute stage, suggesting that ASL-MRI might delineate crossed cerebellar diaschisis (CCD). Ipsilateral low CBF-ASL values were observed in frontal lobes and thalami with a putaminal hemorrhage and lentiform nuclei, temporal lobes, and parietal lobes with a thalamic hemorrhage, suggesting that ASL-MRI showed the ipsilateral cerebral diaschisis (ICD). In the putaminal hemorrhage patients, the hematoma volume negatively affected both the bilateral cerebellar and cerebral hemispheric CBF-ASL values. In the thalamic hemorrhage patients, a concomitant intraventricular hemorrhage caused low cerebral hemispheric CBF-ASL values.

Conclusion

The use of ASL-MRI is sensitive to the perfusion abnormalities and could thus be helpful to estimate functional abnormalities in cerebral hemorrhage patients.

Keywords

Arterial spin-labeling Brain perfusion Cerebral hemorrhage Putaminal hemorrhage Thalamic hemorrhage 

Notes

Acknowledgments

This work was partly supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science.

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the Institutional Review Board and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that the IRB waived written, informed consent.

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Ghetti G (2012) Putaminal hemorrhages. Front Neurol Neurosci 30:141–144CrossRefPubMedGoogle Scholar
  2. 2.
    Berthezene Y, Nighoghossian N, Damien J, Derex L, Trouillas P, Froment JC (1998) Effects of thalamic hemorrhage on cortical hemodynamic parameters assessed by perfusion MR imaging: preliminary report. J Neurol Sci 157:67–72CrossRefPubMedGoogle Scholar
  3. 3.
    Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–830CrossRefPubMedGoogle Scholar
  4. 4.
    O'Gorman RL, Siddiqui A, Alsop DC, Jarosz JM (2010) Perfusion MRI demonstrates crossed-cerebellar diaschisis in sickle cell disease. Pediatr Neurol 42:437–440CrossRefPubMedGoogle Scholar
  5. 5.
    Araki Y, Furuichi M, Nokura H, Iwata T, Iwama T (2010) Prediction of stroke rehabilitation outcome with xenon-enhanced computed tomography cerebral blood flow study. J Stroke Cerebrovasc Dis 19:450–457CrossRefPubMedGoogle Scholar
  6. 6.
    Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45CrossRefPubMedGoogle Scholar
  7. 7.
    Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687CrossRefPubMedGoogle Scholar
  8. 8.
    Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532CrossRefPubMedGoogle Scholar
  9. 9.
    Kimura H, Kado H, Koshimoto Y, Tsuchida T, Yonekura Y, Itoh H (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 22:189–198CrossRefPubMedGoogle Scholar
  10. 10.
    Yoshiura T, Hiwatashi A, Noguchi T et al (2009) Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol 19:2819–2825CrossRefPubMedGoogle Scholar
  11. 11.
    Farrell B, Godwin J, Richards S, Warlow C (1991) The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: final results. J Neurol Neurosurg Psychiatry 54:1044–1054PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254CrossRefPubMedGoogle Scholar
  13. 13.
    Wang J, Licht DJ, Jahng GH et al (2003) Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging 18:404–413CrossRefPubMedGoogle Scholar
  14. 14.
    Noguchi T, Irie H, Takase Y et al (2010) Hemodynamic studies of intracranial dural arteriovenous fistulas using arterial spin-labeling MR imaging. Interv Neuroradiol 16:409–419PubMedCentralPubMedGoogle Scholar
  15. 15.
    Noguchi T, Kawashima M, Irie H et al (2011) Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur J Radiol 80:e557–562CrossRefPubMedGoogle Scholar
  16. 16.
    Noguchi T, Kawashima M, Nishihara M, Hirai T, Matsushima T, Irie H (2013) Arterial spin-labeling MR imaging in moyamoya disease compared with clinical assessments and other MR imaging finings. Eur J Radiol 82:e840–847CrossRefPubMedGoogle Scholar
  17. 17.
    Chen S, Guan M, Lian HJ et al (2014) Crossed cerebellar diaschisis detected by arterial spin-labeled perfusion magnetic resonance imaging in subacute ischemic stroke. J Stroke Cerebrovasc Dis 23:2378–2383CrossRefPubMedGoogle Scholar
  18. 18.
    Schellinger PD, Fiebach JB, Hoffmann K et al (2003) Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke 34:1674–1679CrossRefPubMedGoogle Scholar
  19. 19.
    Pascual AM, Lopez-Mut JV, Benlloch V, Chamarro R, Soler J, Lainez MJ (2007) Perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage at baseline and during the 1st and 2nd week: a longitudinal study. Cerebrovasc Dis 23:6–13CrossRefPubMedGoogle Scholar
  20. 20.
    Baron JC, D'Antona R, Pantano P, Serdaru M, Samson Y, Bousser MG (1986) Effects of thalamic stroke on energy metabolism of the cerebral cortex. A positron tomography study in man. Brain 109(Pt 6):1243–1259CrossRefPubMedGoogle Scholar
  21. 21.
    Metter EJ, Riege WH, Hanson WR et al (1983) Comparison of metabolic rates, language, and memory in subcortical aphasias. Brain Lang 19:33–47CrossRefPubMedGoogle Scholar
  22. 22.
    Torizuka K, Uemura K, Toru M et al (1996) A phase 3 clinical trial of 123I-iomazenil, a new central-type benzodiazepine receptor imaging agent (Part 4)--Report on clinical usefulness in diagnosis of cerebrovascular diseases. Kaku Igaku 33:329–344PubMedGoogle Scholar
  23. 23.
    Kidwell CS, Saver JL, Mattiello J et al (2001) Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology 57:1611–1617CrossRefPubMedGoogle Scholar
  24. 24.
    Miyazawa N, Mitsuka S, Asahara T et al (1998) Clinical features of relative focal hyperfusion in patients with intracerebral hemorrhage detected by contrast-enhanced xenon CT. AJNR Am J Neuroradiol 19:1741–1746PubMedGoogle Scholar
  25. 25.
    Olivot JM, Albers GW (2010) Using advanced MRI techniques for patient selection before acute stroke therapy. Curr Treat Options Cardiovasc Med 12:230–239CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tomoyuki Noguchi
    • 1
    • 2
  • Masashi Nishihara
    • 2
  • Yoshiaki Egashira
    • 2
  • Shinya Azama
    • 2
  • Tetsuyoshi Hirai
    • 2
  • Isao Kitano
    • 2
  • Yusuke Yakushiji
    • 3
  • Masatou Kawashima
    • 4
  • Hiroyuki Irie
    • 2
  1. 1.Department of Radiology, National Center for Global Health and MedicineTokyoJapan
  2. 2.Department of Radiology, Faculty of Medicine and Graduate School of MedicineSaga UniversitySagaJapan
  3. 3.Department of Neurology, Faculty of Medicine and Graduate School of MedicineSaga UniversitySagaJapan
  4. 4.Department of Neurosurgery, Faculty of Medicine and Graduate School of MedicineSaga UniversitySagaJapan

Personalised recommendations