, Volume 57, Issue 8, pp 815–824 | Cite as

High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma

Part 2: new vs. old imaging concept
  • Selma SirinEmail author
  • Marc Schlamann
  • Klaus A. Metz
  • Norbert Bornfeld
  • Bernd Schweiger
  • Markus Holdt
  • Petra Temming
  • Michael M. Schuendeln
  • Sophia L. Goericke
Paediatric Neuroradiology



High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil.


One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard.


Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion).


The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up.


MRI Retinoblastoma Tumor extension Histology Eye 


Ethical standards and patient consent

We declare that all human and animal studies have been approved by the Ethics Committee of the University of Duisburg-Essen and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    de Jong MC, de Graaf P, Noij DP, Goricke S, Maeder P, Galluzzi P, Brisse HJ, Moll AC, Castelijns JA, European Retinoblastoma Imaging Collaboration (ERIC) (2014) Diagnostic performance of magnetic resonance imaging and computed tomography for advanced retinoblastoma: a systematic review and meta-analysis. Ophthalmology 121:1109–1118CrossRefPubMedGoogle Scholar
  2. 2.
    Brisse HJ, de Graaf P, Galluzzi P et al (2014) Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation. Eur Radiol. doi: 10.1007/s00330-014-3514-1 Google Scholar
  3. 3.
    Chawla B, Sharma S, Sen S, Azad R, Bajaj MS, Kashyap S, Pushker N, Ghose S (2012) Correlation between clinical features, magnetic resonance imaging, and histopathologic findings in retinoblastoma: a prospective study. Ophthalmology 119:850–856CrossRefPubMedGoogle Scholar
  4. 4.
    de Graaf P, Goricke S, Rodjan F, Galluzzi P, Maeder P, Castelijns JA, Brisse HJ, on behalf of the European Retinoblastoma Imaging Collaboration (ERIC) (2012) Guidelines for imaging retinoblastoma: imaging principles and MRI standardization. Pediatr Radiol 42:2–14CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Khurana A, Eisenhut CA, Wan W, Ebrahimi KB, Patel C, O'Brien JM, Yeom K, Daldrup-Link HE (2012) Comparison of the diagnostic value of MR imaging and ophthalmoscopy for the staging of retinoblastoma. Eur Radiol 23:1271–1280CrossRefPubMedGoogle Scholar
  6. 6.
    Rauschecker AM, Patel CV, Yeom KW, Eisenhut CA, Gawande RS, O'Brien JM, Ebrahimi KB, Daldrup-Link HE (2012) High-resolution MR imaging of the orbit in patients with retinoblastoma. Radiographics 32:1307–1326CrossRefPubMedGoogle Scholar
  7. 7.
    Sirin S, Schlamann M, Metz KA, Bornfeld N, Schweiger B, Holdt M, Schuendeln MM, Lohbeck S, Krasny A, Goericke SL (2013) Diagnostic image quality of gadolinium-enhanced T1-weighted MRI with and without fat saturation in children with retinoblastoma. Pediatr Radiol 43:716–724CrossRefPubMedGoogle Scholar
  8. 8.
    Armenian SH, Panigrahy A, Murphree AL, Jubran RF (2008) Management of retinoblastoma with proximal optic nerve enhancement on MRI at diagnosis. Pediatr Blood Cancer 51:479–484CrossRefPubMedGoogle Scholar
  9. 9.
    Narang S, Mashayekhi A, Rudich D, Shields CL (2012) Predictors of long-term visual outcome after chemoreduction for management of intraocular retinoblastoma. Clin Exp Ophthalmol 40:736–742CrossRefGoogle Scholar
  10. 10.
    Rodriguez-Galindo C, Chantada GL, Haik BG, Wilson MW (2007) Treatment of retinoblastoma: current status and future perspectives. Curr Treat Options Neurol 9:294–307CrossRefPubMedGoogle Scholar
  11. 11.
    Shields CL, Shields JA (2010) Retinoblastoma management: advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy. Curr Opin Ophthalmol 21:203–212CrossRefPubMedGoogle Scholar
  12. 12.
    Shields CL, Shields JA, Baez K, Cater JR, De Potter P (1994) Optic nerve invasion of retinoblastoma. Metastatic potential and clinical risk factors. Cancer 73:692–698CrossRefPubMedGoogle Scholar
  13. 13.
    Chantada GL, Casco F, Fandino AC, Galli S, Manzitti J, Scopinaro M, Schvartzman E, de Davila MT (2007) Outcome of patients with retinoblastoma and postlaminar optic nerve invasion. Ophthalmology 114:2083–2089CrossRefPubMedGoogle Scholar
  14. 14.
    Chantada GL, Dunkel IJ, Antoneli CB, de Davila MT, Arias V, Beaverson K, Fandino AC, Chojniak M, Abramson DH (2007) Risk factors for extraocular relapse following enucleation after failure of chemoreduction in retinoblastoma. Pediatr Blood Cancer 49:256–260CrossRefPubMedGoogle Scholar
  15. 15.
    Uusitalo MS, Van Quill KR, Scott IU, Matthay KK, Murray TG, O'Brien JM (2001) Evaluation of chemoprophylaxis in patients with unilateral retinoblastoma with high-risk features on histopathologic examination. Arch Ophthalmol 119:41–48CrossRefPubMedGoogle Scholar
  16. 16.
    Bosaleh A, Sampor C, Solernou V, Fandino A, Dominguez J, de Davila MT, Chantada GL (2012) Outcome of children with retinoblastoma and isolated choroidal invasion. Arch Ophthalmol 130:724–729CrossRefPubMedGoogle Scholar
  17. 17.
    Brisse HJ, Guesmi M, Aerts I et al (2007) Relevance of CT and MRI in retinoblastoma for the diagnosis of postlaminar invasion with normal-size optic nerve: a retrospective study of 150 patients with histological comparison. Pediatr Radiol 37:649–656CrossRefPubMedGoogle Scholar
  18. 18.
    Wilson MW, Rodriguez-Galindo C, Billups C, Haik BG, Laningham F, Patay Z (2009) Lack of correlation between the histologic and magnetic resonance imaging results of optic nerve involvement in eyes primarily enucleated for retinoblastoma. Ophthalmology 116:1558–1563CrossRefPubMedGoogle Scholar
  19. 19.
    de Graaf P, Barkhof F, Moll AC, Imhof SM, Knol DL, van der Valk P, Castelijns JA (2005) Retinoblastoma: MR imaging parameters in detection of tumor extent. Radiology 235:197–207CrossRefPubMedGoogle Scholar
  20. 20.
    Song KD, Eo H, Kim JH, Yoo SY, Jeon TY (2012) Can preoperative MR imaging predict optic nerve invasion of retinoblastoma? Eur J Radiol 81:4041–4045CrossRefPubMedGoogle Scholar
  21. 21.
    Lee BJ, Kim JH, Kim DH, Park SH, Yu YS (2012) The validity of routine brain MRI in detecting post-laminar optic nerve involvement in retinoblastoma. Br J Ophthalmol 96:1237–1241CrossRefPubMedGoogle Scholar
  22. 22.
    Lemke AJ, Kazi I, Mergner U et al (2007) Retinoblastoma—MR appearance using a surface coil in comparison with histopathological results. Eur Radiol 17:49–60CrossRefPubMedGoogle Scholar
  23. 23.
    Schueler AO, Hosten N, Bechrakis NE, Lemke AJ, Foerster P, Felix R, Foerster MH, Bornfeld N (2003) High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol 87:330–335CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Linn Murphree A (2005) Intraocular retinoblastoma: the case for a new group classification. Ophthalmol Clin N Am 18:41–53CrossRefGoogle Scholar
  25. 25.
    Shields CL, Mashayekhi A, Au AK, Czyz C, Leahey A, Meadows AT, Shields JA (2006) The International Classification of Retinoblastoma predicts chemoreduction success. Ophthalmology 113:2276–2280CrossRefPubMedGoogle Scholar
  26. 26.
    Lee V, Hungerford JL, Bunce C, Ahmed F, Kingston JE, Plowman PN (2003) Globe conserving treatment of the only eye in bilateral retinoblastoma. Br J Ophthalmol 87:1374–1380CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shields CL, Shields JA (2004) Diagnosis and management of retinoblastoma. Cancer Control 11:317–327PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Selma Sirin
    • 1
    Email author
  • Marc Schlamann
    • 1
  • Klaus A. Metz
    • 2
  • Norbert Bornfeld
    • 3
  • Bernd Schweiger
    • 1
  • Markus Holdt
    • 3
  • Petra Temming
    • 4
  • Michael M. Schuendeln
    • 4
  • Sophia L. Goericke
    • 1
  1. 1.Department of Diagnostic and Interventional Radiology and NeuroradiologyUniversity Hospital EssenEssenGermany
  2. 2.Department of Pathology and NeuropathologyUniversity Hospital EssenEssenGermany
  3. 3.Department of OphthalmologyUniversity Hospital EssenEssenGermany
  4. 4.Department of Pediatric Hematology and OncologyUniversity Hospital EssenEssenGermany

Personalised recommendations