Advertisement

Neuroradiology

, Volume 57, Issue 7, pp 697–703 | Cite as

Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

  • Adam Herman Bauer
  • William Erly
  • Franklin G. Moser
  • Marcel Maya
  • Kambiz Nael
Diagnostic Neuroradiology

Abstract

Introduction

Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM.

Methods

In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K trans, and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET.

Results

Twenty-three patients (14 M, age 32–78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K trans, and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K trans were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98.

Conclusion

The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %.

Keywords

Glioblastoma multiforme Intracranial metastasis Dynamic contrast enhancement Dynamic susceptibility contrast Diffusion tensor imaging 

Notes

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the University of Arizona IRB and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

KN consults for Olea Medical.

References

  1. 1.
    Sherwood PR, Stommel M, Murman DL, Given CW, Given BA (2004) Primary malignant brain tumor incidence and medicaid enrollment. Neurology 62:1788–1793PubMedCrossRefGoogle Scholar
  2. 2.
    Ranjan T, Abrey LE (2009) Current management of metastatic brain disease. Neurotherapeutics 6:598–603PubMedCrossRefGoogle Scholar
  3. 3.
    Mukundan S, Holder C, Olson JJ (2008) Neuroradiological assessment of newly diagnosed glioblastoma. J Neuro-Oncol 89:259–269CrossRefGoogle Scholar
  4. 4.
    Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS et al (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion mr imaging. AJNR Am J Neuroradiol 28:1078–1084PubMedCrossRefGoogle Scholar
  5. 5.
    Giese A, Westphal M (2001) Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol 127:217–225PubMedCrossRefGoogle Scholar
  6. 6.
    Yang G, Jones TL, Barrick TR, Howe FA (2014) Discrimination between glioblastoma multiforme and solitary metastasis using morphological features derived from the p:q tensor decomposition of diffusion tensor imaging. NMR Biomed 27(9):1103–1111PubMedCrossRefGoogle Scholar
  7. 7.
    Blanchet L, Krooshof PW, Postma GJ, Idema AJ, Goraj B, Heerschap A, Buydens LM (2011) Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. AJNR Am J Neuroradiol 32(1):67–73PubMedGoogle Scholar
  8. 8.
    Wang S, Kim SJ, Poptani H, Woo JH, Mohan S, Jin R et al (2014) Diagnostic utility of diffusion tensor imaging in differentiating glioblastomas from brain metastases. AJNR Am J Neuroradiol 35:928–934PubMedCrossRefGoogle Scholar
  9. 9.
    Wang S, Kim S, Chawla S, Wolf RL, Zhang WG, O’Rourke DM et al (2009) Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. NeuroImage 44:653–660PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307PubMedCrossRefGoogle Scholar
  11. 11.
    Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M et al (2005) Apparent diffusion coefficient of human brain tumors at mr imaging. Radiology 235:985–991PubMedCrossRefGoogle Scholar
  12. 12.
    Lu S, Ahn D, Johnson G, Cha S (2003) Peritumoral diffusion tensor imaging of high- grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24:937–941PubMedGoogle Scholar
  13. 13.
    Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721PubMedCrossRefGoogle Scholar
  14. 14.
    Server A, Orheim TE, Graff BA, Josefsen R, Kumar T, Nakstad PH (2011) Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-t dynamic susceptibility-weighted contrast- enhanced perfusion mr imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology 53:319–330PubMedCrossRefGoogle Scholar
  15. 15.
    Svolos P, Tsolaki E, Kapsalaki E et al (2013) Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Magn Reson Imaging 31(9):1567–1577PubMedCrossRefGoogle Scholar
  16. 16.
    Tsougos I, Svolos P, Kousi E et al (2012) Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging 12:423–436PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (grappa). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  18. 18.
    Song HK, Dougherty L (2000) K-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44:825–832PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng HL, Wright GA (2006) Rapid high-resolution t(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55:566–574PubMedCrossRefGoogle Scholar
  20. 20.
    Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced mr methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590PubMedCrossRefGoogle Scholar
  22. 22.
    Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in mr perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174PubMedCrossRefGoogle Scholar
  23. 23.
    Basser PJ, Pierpaoli C (1998) A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 39:928–934PubMedCrossRefGoogle Scholar
  24. 24.
    Haker S, Wells WM III, Warfield SK, Talos IF, Bhagwat JG, Goldberg-Zimring D et al (2005) Combining classifiers using their receiver operating characteristics and maximum likelihood estimation. Med Image Comput Comput Assist Interv 8:506–514PubMedCentralPubMedGoogle Scholar
  25. 25.
    Rees JH, Smirniotopoulos JG, Jones RV, Wong K (1996) Glioblastoma multiforme: radiologic-pathologic correlation. Radiographics 16:1413–1438PubMedCrossRefGoogle Scholar
  26. 26.
    Long DM (1979) Capillary ultrastructure in human metastatic brain tumors. J Neurosurg 51:53–58PubMedCrossRefGoogle Scholar
  27. 27.
    Kremer S, Grand S, Remy C, Esteve F, Lefournier V, Pasquier B et al (2002) Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors. J Neuroradiol 29:105–113PubMedGoogle Scholar
  28. 28.
    Cho SK, Na DG, Ryoo JW et al (2002) Perfusion MR imaging: clinical utility for the differential diagnosis of various brain tumors. Korean J Radiol 3:171–179PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Wang S, Kim S, Chawla S, Wolf RL, Knipp DE, Vossough A et al (2011) Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced mr imaging. AJNR Am J Neuroradiol 32:507–514PubMedCrossRefGoogle Scholar
  30. 30.
    Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman RI (2004) Diffusion-tensor mr imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232:221–228PubMedCrossRefGoogle Scholar
  31. 31.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455PubMedCrossRefGoogle Scholar
  32. 32.
    Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S et al (2008) Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. NeuroImage 43:29–35PubMedCrossRefGoogle Scholar
  33. 33.
    Tsuchiya K, Fujikawa A, Nakajima M, Honya K (2005) Differentiation between solitary brain metastasis and high-grade glioma by diffusion tensor imaging. Br J Radiol 78:533–537PubMedCrossRefGoogle Scholar
  34. 34.
    Morita K, Matsuzawa H, Fujii Y, Tanaka R, Kwee IL, Nakada T (2005) Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. J Neurosurg 102:336–341PubMedCrossRefGoogle Scholar
  35. 35.
    McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62:5381–5385PubMedGoogle Scholar
  36. 36.
    Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion mr imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755PubMedGoogle Scholar
  37. 37.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced t(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Adam Herman Bauer
    • 1
  • William Erly
    • 2
  • Franklin G. Moser
    • 1
  • Marcel Maya
    • 1
  • Kambiz Nael
    • 2
  1. 1.Department of Medical ImagingCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Department of Medical ImagingUniversity of Arizona Medical CenterTucsonUSA

Personalised recommendations