, Volume 57, Issue 7, pp 685–695 | Cite as

Know your tools—concordance of different methods for measuring brain volume change after ischemic stroke

  • Nawaf YassiEmail author
  • Bruce C. V. Campbell
  • Bradford A. Moffat
  • Christopher Steward
  • Leonid Churilov
  • Mark W. Parsons
  • Patricia M. Desmond
  • Stephen M. Davis
  • Andrew Bivard
Diagnostic Neuroradiology



Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods.


Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements.


Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions.


Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions.


Stroke MRI Brain volume Atrophy 


Ethical Standards and Patient Consent

We declare that all human and animal studies have been approved by the Melbourne Health Research Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of Interest

We declare that we have no conflict of interest.

Supplementary material

234_2015_1522_MOESM1_ESM.pdf (3.3 mb)
ESM 1 (PDF 3409 kb)


  1. 1.
    Popescu V, Agosta F, Hulst HE et al (2013) Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 84(10):1082–1091PubMedCrossRefGoogle Scholar
  2. 2.
    Li Q, Pardoe H, Lichter R et al (2014) Cortical thickness estimation in longitudinal stroke studies: a comparison of 3 measurement methods. NeuroImage: Clinical. doi: 10.1016/j.nicl.2014.08.017
  3. 3.
    Dang C, Liu G, Xing S et al (2013) Longitudinal cortical volume changes correlate with motor recovery in patients after acute local subcortical infarction. Stroke 44(10):2795–2801PubMedCrossRefGoogle Scholar
  4. 4.
    Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363(9406):392–394PubMedCrossRefGoogle Scholar
  5. 5.
    Seghier ML, Ramsden S, Lim L, Leff AP, Price CJ (2014) Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45(3):877–879Google Scholar
  6. 6.
    Aoi MC, Hu K, Lo MT, Selim M, Olufsen MS, Novak V (2012) Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke. PLoS One 7(10):e46794PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Brodtmann A, Pardoe H, Li Q, Lichter R, Ostergaard L, Cumming T (2012) Changes in regional brain volume three months after stroke. J Neurol Sci 322:122–128PubMedCrossRefGoogle Scholar
  8. 8.
    Ding G, Jiang Q, Li L et al (2010) Cerebral tissue repair and atrophy after embolic stroke in rat: a magnetic resonance imaging study of erythropoietin therapy. J Neurosci Res 88(14):3206–3214PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Shen F, Walker EJ, Jiang L et al (2011) Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 31(12):2343–2351PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30(4):1310–1327PubMedCrossRefGoogle Scholar
  11. 11.
    Lansberg MG, O’Brien MW, Tong DC, Moseley ME, Albers GW (2001) Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging. Arch Neurol 58(4):613PubMedGoogle Scholar
  12. 12.
    Wang X, Valdes Hernandez MC, Doubal F, Chappell FM, Wardlaw JM (2012) How much do focal infarcts distort white matter lesions and global cerebral atrophy measures? Cerebrovasc Dis 34(5–6):336–342PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kuceyeski A, Kamel H, Navi BB, Raj A, Iadecola C (2014) Predicting future brain tissue loss from white matter connectivity disruption in ischemic stroke. Stroke 45(3):717–722PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156PubMedCrossRefGoogle Scholar
  15. 15.
    Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841PubMedCrossRefGoogle Scholar
  16. 16.
    Wolfson L, Wakefield DB, Moscufo N et al (2013) Rapid buildup of brain white matter hyperintensities over 4 years linked to ambulatory blood pressure, mobility, cognition, and depression in old persons. J Gerontol A: Biol Med Sci 68(11):1387–1394Google Scholar
  17. 17.
    Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219PubMedCrossRefGoogle Scholar
  18. 18.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57PubMedCrossRefGoogle Scholar
  20. 20.
    Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071PubMedCrossRefGoogle Scholar
  21. 21.
    Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075PubMedCrossRefGoogle Scholar
  23. 23.
    Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355PubMedCrossRefGoogle Scholar
  24. 24.
    Fischl B, Salat DH, van der Kouwe AJ et al (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84PubMedCrossRefGoogle Scholar
  25. 25.
    Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  26. 26.
    Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80PubMedCrossRefGoogle Scholar
  27. 27.
    Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26(4):518–529PubMedCrossRefGoogle Scholar
  28. 28.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194PubMedCrossRefGoogle Scholar
  29. 29.
    Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176PubMedCrossRefGoogle Scholar
  30. 30.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  32. 32.
    Smith RJ (2009) Use and misuse of the reduced major axis for line‐fitting. Am J Phys Anthropol 140(3):476–486PubMedCrossRefGoogle Scholar
  33. 33.
    Winkler AM, Kochunov P, Blangero J et al (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    De Stefano N, Airas L, Grigoriadis N et al (2014) Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 28(2):147–156PubMedCrossRefGoogle Scholar
  35. 35.
    Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489PubMedCrossRefGoogle Scholar
  36. 36.
    Jasperse B, Valsasina P, Neacsu V et al (2007) Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using manually‐edited SIENA and SIENAX. J Magn Reson Imaging 26(4):881–885PubMedCrossRefGoogle Scholar
  37. 37.
    Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821PubMedCrossRefGoogle Scholar
  39. 39.
    Clarkson MJ, Cardoso MJ, Ridgway GR et al (2011) A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage 57(3):856–865PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nawaf Yassi
    • 1
    Email author
  • Bruce C. V. Campbell
    • 1
  • Bradford A. Moffat
    • 2
  • Christopher Steward
    • 2
  • Leonid Churilov
    • 3
  • Mark W. Parsons
    • 4
  • Patricia M. Desmond
    • 2
  • Stephen M. Davis
    • 1
  • Andrew Bivard
    • 1
  1. 1.Departments of Medicine and Neurology, Melbourne Brain Centre @ The Royal Melbourne HospitalThe University of MelbourneParkvilleAustralia
  2. 2.Department of Radiology, The Royal Melbourne HospitalThe University of MelbourneParkvilleAustralia
  3. 3.The Florey Institute of Neurosciences and Mental HealthThe University of MelbourneParkvilleAustralia
  4. 4.Priority Research Centre for Translational Neuroscience and Mental HealthUniversity of Newcastle and Hunter Medical Research InstituteNewcastleAustralia

Personalised recommendations