Advertisement

Neuroradiology

, Volume 56, Issue 5, pp 413–422 | Cite as

Motor function deficits in schizophrenia: an fMRI and VBM study

  • Sadhana Singh
  • Satnam Goyal
  • Shilpi Modi
  • Pawan Kumar
  • Namita Singh
  • Triptish Bhatia
  • Smita N. Deshpande
  • Subash Khushu
Functional Neuroradiology

Abstract

Introduction

To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM).

Methods

A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session.

Results

fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls.

Conclusion

The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task.

Keywords

fMRI BOLD VBM Motor task Schizophrenia 

Notes

Acknowledgments

This work was supported by DRDO R&D Project No. INM-311 (4.1) and funded in part by a grant to TB from the Fogarty International Center, NIH: The Impact of Yoga Supplementation on Cognitive Function Among Indian Outpatients Grant #1R01TW008289. Content is solely the author’s responsibility and does not necessarily represent the official views of the National Institutes of Health or other funding agencies.

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

234_2014_1325_Fig6_ESM.jpg (34 kb)
Fig. S1

Representative images of a raw data, b segmented grey matter, and c segmented white matter of a control subject (JPEG 34 kb)

234_2014_1325_Fig7_ESM.jpg (31 kb)
Fig.S2

Representative images of a raw data, b segmented grey matter, and c segmented white matter of a schizophrenic subject (JPEG 30 kb)

References

  1. 1.
    Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T (2011) Functional and structural MR imaging in neuropsychiatric disorders: Part 2. Application in schizophrenia and autism. AJNR Am J Neuroradiol 33:2033–2037. doi: 10.3174/ajnr.A2800 PubMedCrossRefGoogle Scholar
  2. 2.
    Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia. Am J Psychiat 153:321–330PubMedGoogle Scholar
  3. 3.
    Rund BR, Borg NE (1999) Cognitive deficits and cognitive training in schizophrenic patients: a review. Acta Psychiat Scand 100:85–95PubMedCrossRefGoogle Scholar
  4. 4.
    Penn DL, Spaulding W, Reed D, Sullivan M, Mueser KT, Hope DA (1997) Cognition and social functioning in schizophrenia. Psychiatry 60:281–291PubMedGoogle Scholar
  5. 5.
    Karlsgodt KH, Glahn DC, van Erp TGM, Therman S, Huttunen M, Manninen M, Kaprio J, Cohen MS, Lönnqvist J, Cannon TD (2007) The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects. Schizophr Res 89:191–197PubMedCrossRefGoogle Scholar
  6. 6.
    Sanjuana J, Lull JJ, Aguilar EJ, Marti-Bonmatí L, Moratal D, Gonzalez JC, Robles M, Keshavan MS (2007) Emotional words induce enhanced brain activity in schizophrenic patients with auditory hallucinations. Psychiat Res 154:21–29CrossRefGoogle Scholar
  7. 7.
    Bedford NJ, Surguladze S, Giampietro V, Brammer MJ, David AS (2012) Self-evaluation in schizophrenia: an fMRI study with implications for the understanding of insight. BMC Psychiat 12:106CrossRefGoogle Scholar
  8. 8.
    Goldberg TE, Green MF (2002) Neurocognitive functioning in patients with schizophrenia: an overview. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology—fifth generation of progress. Lippincott, Philadelphia, pp 657–669Google Scholar
  9. 9.
    Müller JL, Röder CH, Schuierer G, Klein H (2002) Motor-induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study. Prog Neuropsychopharmacol Biol Psychiat 26(3):421–426CrossRefGoogle Scholar
  10. 10.
    Midorikawa A, Hashimoto R, Noguchi H, Saitoh O, Kunugi H, Nakamura K (2008) Impairment of motor dexterity in schizophrenia assessed by a novel finger movement test. Psychiat Res 159:281–289CrossRefGoogle Scholar
  11. 11.
    Varlet M, Marin L, Raffard S, Schmidt RC, Capdevielle D, Boulenger JP, Del-Monte J, Bardy BG (2012) Impairments of social motor coordination in schizophrenia. PLoS One 7(1):e29772. doi: 10.1371/journal.pone.0029772 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fink M, Shorter E, Taylor MA (2010) Catatonia is not schizophrenia: Kraepelin’s error and the need to recognize catatonia as an independent syndrome in medical nomenclature. Schizophr Bull 36:314–320PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ungvari GS, Caroff SN, Gerevich J (2010) The catatonia conundrum: evidence of psychomotor phenomena as a symptom dimension in psychotic disorders. Schizophr Bull 36:231–238PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pappa S, Dazzan P (2009) Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: a systematic review. Psychol Med 39:1065–1076PubMedCrossRefGoogle Scholar
  15. 15.
    Whitty PF, Owoeye O, Waddington JL (2009) Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull 35:415–424PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Morrens M, Hulstijn W, Sabbe B (2007) Psychomotor slowing in schizophrenia. Schizophr Bull 33:1038–1053PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wolff AL, O’Driscoll GA (1999) Motor deficits and schizophrenia: the evidence from neuroleptic-naive patients and populations at risk. J Psychiat Neurosci 24:304–314Google Scholar
  18. 18.
    Torrey EF (2002) Studies of individuals with schizophrenia never treated with antipsychotic medications: a review. Schizophr Res 58:101–115PubMedCrossRefGoogle Scholar
  19. 19.
    Walther S, Strik W (2012) Motor symptoms and schizophrenia. Neuropsychobiology 66:77–92PubMedCrossRefGoogle Scholar
  20. 20.
    Niznikiewicz MA, Kubicki M, Shenton ME (2003) Recent structural and functional imaging findings in schizophrenia. Curr Opin Psychiat 16:123–147CrossRefGoogle Scholar
  21. 21.
    Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J 64:803–812PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Payoux P, Boulanouar K, Sarramon C, Fabre N, Descombes S, Galitsky M, Thalamas C, Brefel-Courbon C, Sabatini U, Manelfe C, Chollet F, Schmitt L, Rascol O (2004) Cortical motor activation in akinetic schizophrenic patients: a pilot functional MRI study. Mov Disord 19:83–90PubMedCrossRefGoogle Scholar
  23. 23.
    Ananth H, Popescu I, Critchley HD, Good CD, Frackowiak RS, Dolan RJ (2002) Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel based morphometry. Am J Psychiat 159(9):1497–1505PubMedCrossRefGoogle Scholar
  24. 24.
    Sigmundsson T, Suckling J, Maier M, Williams S, Bullmore E, Greenwood K, Fukuda R, Ron M, Toone B (2001) Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiat 158(2):234–243PubMedCrossRefGoogle Scholar
  25. 25.
    Kubicki M, Shenton ME, Salisbury DF, Hirayasu Y, Kasai K, Kikinis R, Jolesz FA, McCarley RW (2002) Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17(4):1711–1719PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Moorhead TW, Job DE, Whalley HC, Sanderson TL, Johnstone EC, Lawrie SM (2004) Voxel-based morphometry of comorbid schizophrenia and learning disability: analyses in normalized and native spaces using parametric and nonparametric statistical methods. Neuroimage 22(1):188–202PubMedCrossRefGoogle Scholar
  27. 27.
    Giuliania NR, Calhouna VD, Pearlsona GD, Francisd A, Buchanan RW (2005) Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res 74:135–147CrossRefGoogle Scholar
  28. 28.
    Asami T, Bouix S, Whitford TJ, Shenton ME, Salisbury DF, McCarley RW (2012) Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation. NeuroImage 59:986–996PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, Zhang T, Li X, Li D, Zou L, Tang H, Zhou XJ, Mechelli A, C ollier DA, Sweeney JA, Li T, Gong Q (2009) Association of cerebral deficits with clinical symptoms in antipsychoticnaive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiat 166:196–205PubMedCrossRefGoogle Scholar
  30. 30.
    Pomarol-Clotet E, Canales-Rodríguez EJ, Salvador R, Sarró S, Gomar JJ, Vila F, Ortiz-Gil J, Iturria-Medina Y, Capdevila A, McKenna PJ (2010) Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Mol Psychiat 15(8):823–830CrossRefGoogle Scholar
  31. 31.
    Nurnberger JI Jr, Blehar MC, Kaufmann CA (1994) Diagnostic interview for genetic studies. Rationale, unique features and training. NIHM Genetics Initiative. Arch Gen Psychiat 51:849–859PubMedCrossRefGoogle Scholar
  32. 32.
    Deshpande SN, Mathur MN, Das SK, Bhatia T, Sharma S, Nimgaonkar VL (1998) A Hindi version of the diagnostic interview for genetic studies. Schizophr Bull 24:489–493PubMedCrossRefGoogle Scholar
  33. 33.
    Gur RC, Ragland JD, Moberg PJ, Bilker WB, Kohler C, Siegel SJ, Gur RE (2001) Computerized neurocognitive scanning: II. The profile of schizophrenia. Neuropsychopharmacology 25:777–788PubMedCrossRefGoogle Scholar
  34. 34.
    Worksley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited again. Neuroimage 2:173–181CrossRefGoogle Scholar
  35. 35.
    Eickhoff SB, Stephan KE, Mohlberg H (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335PubMedCrossRefGoogle Scholar
  36. 36.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  37. 37.
    Dassonville P, Zhu X-H, Ugurbil K, Kim S-G, Ashe J, (1997) Neurobiology functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci U S A 94:14015–14018PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Jogems-Kostermana BJM, Zitmanb FG, Van Hoofa JJM, Hulstijnc W (2001) Psychomotor slowing and planning deficits in schizophrenia. Schizophr Res 48:317–333CrossRefGoogle Scholar
  39. 39.
    Cramer SC, Moore CI, Finklestein SP, Rosen BR (2000) A pilot study of somatotopic mapping after cortical infarct. Stroke 31:668–671PubMedCrossRefGoogle Scholar
  40. 40.
    Picard H, Amado I, Mages SM, Olie JP, Krebs MO (2008) The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull 34:155–172PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Schamhmann J (1998) Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci 2:362–371CrossRefGoogle Scholar
  42. 42.
    Marcelis M, Suckling J, Woodruff P, Hofman P, Bullmore E, van Os J (2003) Searching for a structural endophenotype in psychosis using computational morphometry. Psychiat Res 122:153–167CrossRefGoogle Scholar
  43. 43.
    Salgado-Pineda P, Baeza I, Perez-Gomez M, Vendrell P, Junque C, Bargallo N, Bernardo M (2003) Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic naive schizophrenic patients. Neuroimage 19:365–375PubMedCrossRefGoogle Scholar
  44. 44.
    Reichenberg A (2010) The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci 12:383–392PubMedGoogle Scholar
  45. 45.
    Chan RC, Chen EY, Law CW (2006) Specific executive dysfunction in patients with first-episode medication-naive schizophrenia. Schizophr Res 82(1):51–64PubMedCrossRefGoogle Scholar
  46. 46.
    Joyce E, Hutton S, Mutsatsa S, Gibbins H, Webb E, Paul S, Robbins T, Barnes T (2002) Executive dysfunction in first-episode schizophrenia and relationship to duration of untreated psychosis: and relationship to duration of untreated psychosis: the West London Study. Br J Psychiat 181:s38–s44CrossRefGoogle Scholar
  47. 47.
    Muller U, Werheid K, Hammerstein E, Jungmann S, Becker T (2005) Prefrontal cognitive deficits in patients with schizophrenia treated with atypical or conventional antipsychotics. Eur Psychiat 20:70–73CrossRefGoogle Scholar
  48. 48.
    Putzhammer A, Heindle B, Broll K, Pfeiff L, Perfahl M, Hajak G (2004) Spatial and temporal parameters of gait disturbances in schizophrenic patients. Schizophr Res 69:159–166PubMedCrossRefGoogle Scholar
  49. 49.
    Putzhammer A, Perfahl M, Pfeiff L, Ibach B, Johann M, Zitzelsberger U, Hajak G (2005) Performance of diadochokinetic movements in schizophrenic patients. Schizophr Res 79:271–280PubMedCrossRefGoogle Scholar
  50. 50.
    Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiat 51:124–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sadhana Singh
    • 1
  • Satnam Goyal
    • 2
  • Shilpi Modi
    • 1
  • Pawan Kumar
    • 1
  • Namita Singh
    • 1
  • Triptish Bhatia
    • 2
  • Smita N. Deshpande
    • 2
  • Subash Khushu
    • 1
  1. 1.NMR Research CenterInstitute of Nuclear Medicine and Allied Sciences (INMAS)DelhiIndia
  2. 2.PGIMERRML HospitalNew DelhiIndia

Personalised recommendations