, Volume 55, Supplement 2, pp 65–95 | Cite as

Diffusion magnetic resonance imaging in preterm brain injury

  • Anand S. Pandit
  • Gareth Ball
  • A. David Edwards
  • Serena J. Counsell
Invited Review



White matter injury and abnormal maturation are thought to be major contributors to the neurodevelopmental disabilities observed in children and adolescents who were born preterm. Early detection of abnormal white matter maturation is important in the design of preventive, protective, and rehabilitative strategies for the management of the preterm infant. Diffusion-weighted magnetic resonance imaging (d-MRI) has become a valuable tool in assessing white matter maturation and injury in survivors of preterm birth. In this review, we aim to (1) describe the basic concepts of d-MRI; (2) evaluate the methods that are currently used to analyse d-MRI; (3) discuss neuroimaging correlates of preterm brain injury observed at term corrected age; during infancy, adolescence and in early adulthood; and (4) explore the relationship between d-MRI measures and subsequent neurodevelopmental performance.


References for this review were identified through searches of PubMed and Google Scholar before March 2013.


The impact of premature birth on cerebral white matter can be observed from term-equivalent age through to adulthood. Disruptions to white matter development, identified by d-MRI, are related to diminished performance in functional domains including motor performance, cognition and behaviour in early childhood and in later life.


d-MRI is an effective tool for investigating preterm white matter injury. With advances in image acquisition and analysis approaches, d-MRI has the potential to be a biomarker of subsequent outcome and to evaluate efficacy of clinical interventions in this population.


Preterm Brain Diffusion magnetic resonance imaging 



This work was supported by: the Medical Research Council Clinical Sciences Centre (Doctoral Studentship to AP); the NIHR Imperial College Comprehensive Biomedical Research Centre; and NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust.

Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    Petrou S, Eddama O, Mangham L (2011) A structured review of the recent literature on the economic consequences of preterm birth. Arch Dis Child Fetal Neonatal Ed 96:F225–F232. doi: 10.1136/adc.2009.161117 CrossRefPubMedGoogle Scholar
  2. 2.
    Mangham LJ, Petrou S, Doyle LW et al (2009) The cost of preterm birth throughout childhood in England and Wales. Pediatrics 123:e312–e327. doi: 10.1542/peds.2008-1827 CrossRefPubMedGoogle Scholar
  3. 3.
    Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes, Behrman RE, Butler AS (2007) Preterm birth: causes, consequences, and prevention. National Academies Press (US), Washington (DC)Google Scholar
  4. 4.
    Saigal S, Doyle LW (2008) An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371:261–269. doi: 10.1016/S0140-6736(08)60136-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Kerr-Wilson CO, Mackay DF, Smith GCS, Pell JP (2011) Meta-analysis of the association between preterm delivery and intelligence. J Public Health 34:209–216. doi: 10.1093/pubmed/fdr024 Google Scholar
  6. 6.
    de Kieviet JF, Zoetebier L, van Elburg RM et al (2012) Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev Med Child Neurol 54:313–323. doi: 10.1111/j.1469-8749.2011.04216.x CrossRefPubMedGoogle Scholar
  7. 7.
    van Noort-van der Spek IL, Franken MCJP, Weisglas-Kuperus N (2012) Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics Pediatrics 129:745–754. doi: 10.1542/peds.2011-1728 CrossRefGoogle Scholar
  8. 8.
    Johnson S, Fawke J, Hennessy E et al (2009) Neurodevelopmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics 124:e249–e257. doi: 10.1542/peds.2008-3743 CrossRefPubMedGoogle Scholar
  9. 9.
    Moster D, Lie RT, Markestad T (2008) Long-term medical and social consequences of preterm birth. N Engl J Med 359:262–273. doi: 10.1056/NEJMoa0706475 CrossRefPubMedGoogle Scholar
  10. 10.
    Volpe JJ (2003) Cerebral white matter injury of the premature infant—more common than you think. Pediatrics 112:176–180CrossRefPubMedGoogle Scholar
  11. 11.
    Volpe JJ (2008) Neurology of the newborn, 5th edn. Saunders, PhiladelphiaGoogle Scholar
  12. 12.
    Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124. doi: 10.1016/S1474-4422(08)70294-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Deng W (2010) Neurobiology of injury to the developing brain. Nat Rev Neurol 6:328–336. doi: 10.1038/nrneurol.2010.53 CrossRefPubMedGoogle Scholar
  14. 14.
    Leviton A, Dammann O, Durum SK (2005) The adaptive immune response in neonatal cerebral white matter damage. Ann Neurol 58:821–828. doi: 10.1002/ana.20662 CrossRefPubMedGoogle Scholar
  15. 15.
    Dean JM, van de Looij Y, Sizonenko SV et al (2011) Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 70:846–856. doi: 10.1002/ana.22480 CrossRefPubMedGoogle Scholar
  16. 16.
    Matute C, Alberdi E, Domercq M et al (2007) Excitotoxic damage to white matter. J Anat 210:693–702. doi: 10.1111/j.1469-7580.2007.00733.x CrossRefPubMedGoogle Scholar
  17. 17.
    Haynes RL, Baud O, Li J et al (2006) Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 15:225–233. doi: 10.1111/j.1750-3639.2005.tb00525.x CrossRefGoogle Scholar
  18. 18.
    Dammann O, Phillips TM, Allred EN et al (2001) Mediators of fetal inflammation in extremely low gestational age newborns. Cytokine 13:234–239. doi: 10.1006/cyto.2000.0820 CrossRefPubMedGoogle Scholar
  19. 19.
    Xanthou M, Niklas V (2012) Inflammatory mediators in neonatal asphyxia and infection./ Neonatology. Springer, Milan, Milano, pp 853–857Google Scholar
  20. 20.
    Børch K, Greisen G (1998) Blood flow distribution in the normal human preterm brain. Pediatr Res 43:28–33. doi: 10.1203/00006450-199804001-00172 CrossRefPubMedGoogle Scholar
  21. 21.
    Ballabh P, Braun A, Nedergaard M (2004) Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 56:117–124. doi: 10.1203/01.PDR.0000130472.30874.FF CrossRefPubMedGoogle Scholar
  22. 22.
    Soul JS, Hammer PE, Tsuji M et al (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61:467–473. doi: 10.1203/pdr.0b013e31803237f6 CrossRefPubMedGoogle Scholar
  23. 23.
    Boylan GB, Young K, Panerai RB et al (2000) Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res 48:12–17. doi: 10.1203/00006450-200007000-00005 CrossRefPubMedGoogle Scholar
  24. 24.
    Shankaran S, Langer JC, Kazzi SN et al (2006) Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics 118:1654–1659. doi: 10.1542/peds.2005-2463 CrossRefPubMedGoogle Scholar
  25. 25.
    Malik S, Vinukonda G, Vose LR et al (2013) Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci 33:411–423. doi: 10.1523/JNEUROSCI.4445-12.2013 CrossRefPubMedGoogle Scholar
  26. 26.
    Desilva TM, Kinney HC, Borenstein NS et al (2007) The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J Comp Neurol 501:879–890. doi: 10.1002/cne.21289 CrossRefPubMedGoogle Scholar
  27. 27.
    Folkerth RD, Keefe RJ, Haynes RL et al (2006) Interferon-γ expression in periventricular leukomalacia in the human brain. Brain Pathol 14:265–274. doi: 10.1111/j.1750-3639.2004.tb00063.x CrossRefGoogle Scholar
  28. 28.
    Billiards SS, Haynes RL, Folkerth RD et al (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208. doi: 10.1002/cne.20991 CrossRefPubMedGoogle Scholar
  29. 29.
    Verney C, Monier A, Fallet-Bianco C, Gressens P (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217:436–448. doi: 10.1111/j.1469-7580.2010.01245.x CrossRefPubMedGoogle Scholar
  30. 30.
    Drobyshevsky A, Song S-K, Gamkrelidze G et al (2005) Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential. J Neurosci 25:5988–5997. doi: 10.1523/JNEUROSCI.4983-04.2005 CrossRefPubMedGoogle Scholar
  31. 31.
    Judas M, Radoš M, Jovanov-Milosević N et al (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26:2671–2684PubMedGoogle Scholar
  32. 32.
    Verney C, Pogledic I, Biran V et al (2012) Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J Neuropathol Exp Neurol 71:251–264. doi: 10.1097/NEN.0b013e3182496429 CrossRefPubMedGoogle Scholar
  33. 33.
    Pierson CR, Folkerth RD, Billiards SS et al (2007) Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 114:619–631. doi: 10.1007/s00401-007-0295-5 CrossRefPubMedGoogle Scholar
  34. 34.
    Dean JM, McClendon E, Hansen K et al (2013) Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci Transl Med 5:168ra7. doi: 10.1126/scitranslmed.3004669 CrossRefPubMedGoogle Scholar
  35. 35.
    Inder TE, Wells SJ, Mogridge NB et al (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143:171–179. doi: 10.1067/S0022-3476(03)00357-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Debillon T, N'Guyen S, Muet A et al (2003) Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch Dis Child Fetal Neonatal Ed 88:F275–F279CrossRefPubMedGoogle Scholar
  37. 37.
    Cheong JLY, Thompson DK, Wang HX et al (2009) Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure. Am J Neuroradiol 30:623–628. doi: 10.3174/ajnr.A1399 CrossRefPubMedGoogle Scholar
  38. 38.
    Adams E, Chau V, Poskitt KJ et al (2010) Tractography-based quantitation of corticospinal tract development in premature newborns. J Pediatr 156:882–888.e1. doi: 10.1016/j.jpeds.2009.12.030 CrossRefPubMedGoogle Scholar
  39. 39.
    Bonifacio SL, Glass HC, Chau V et al (2010) Extreme premature birth is not associated with impaired development of brain microstructure. J Pediatr 157:726–732.e1. doi: 10.1016/j.jpeds.2010.05.026 CrossRefPubMedGoogle Scholar
  40. 40.
    Thompson DK, Inder TE, Faggian N et al (2012) Corpus callosum alterations in very preterm infants: perinatal correlates and 2 year neurodevelopmental outcomes. NeuroImage 59:3571–3581. doi: 10.1016/j.neuroimage.2011.11.057 CrossRefPubMedGoogle Scholar
  41. 41.
    Liu Y, Aeby A, Baleriaux D et al (2012) White matter abnormalities are related to microstructural changes in preterm neonates at term-equivalent age: a diffusion tensor imaging and probabilistic tractography study. Am J Neuroradiol 33:839–845. doi: 10.3174/ajnr.A2872 CrossRefPubMedGoogle Scholar
  42. 42.
    van Pul C, van Kooij BJM, de Vries LS et al (2012) Quantitative fiber tracking in the corpus callosum and internal capsule reveals microstructural abnormalities in preterm infants at term-equivalent age. Am J Neuroradiol 33:678–684. doi: 10.3174/ajnr.A2859 CrossRefPubMedGoogle Scholar
  43. 43.
    Woodward LJ, Anderson PJ, Austin NC et al (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694. doi: 10.1056/NEJMoa053792 CrossRefPubMedGoogle Scholar
  44. 44.
    Wilke M, Krägeloh-Mann I, Holland SK (2006) Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307. doi: 10.1007/s00221-006-0732-z CrossRefPubMedGoogle Scholar
  45. 45.
    Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67:728–734. doi: 10.1016/j.neuron.2010.08.040 CrossRefPubMedGoogle Scholar
  46. 46.
    Ment LR, Hirtz D, Hüppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055. doi: 10.1016/S1474-4422(09)70257-1 CrossRefPubMedGoogle Scholar
  47. 47.
    Thompson DK, Inder TE, Faggian N et al (2011) Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. NeuroImage 55:479–490. doi: 10.1016/j.neuroimage.2010.12.025 CrossRefPubMedGoogle Scholar
  48. 48.
    Nosarti C, Rushe TM, Woodruff PW et al (2004) Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127:2080–2089. doi: 10.1093/brain/awh230 CrossRefPubMedGoogle Scholar
  49. 49.
    Narberhaus A, Segarra D, Caldú X et al (2008) Corpus callosum and prefrontal functions in adolescents with history of very preterm birth. Neuropsychologia 46:111–116. doi: 10.1016/j.neuropsychologia.2007.08.004 CrossRefPubMedGoogle Scholar
  50. 50.
    Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72. doi: 10.1002/cne.901320103 CrossRefPubMedGoogle Scholar
  51. 51.
    Yung A, Poon G, Qiu D, et al (2007) White matter volume and anisotropy in preterm children: a pilot study of neurocognitive correlates. Pediatr Res. doi: 10.1203/pdr.0b013e31805365db
  52. 52.
    Northam GB, Liégeois F, Chong WK et al (2011) Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol 69:702–711. doi: 10.1002/ana.22263 CrossRefPubMedGoogle Scholar
  53. 53.
    Nosarti C, Giouroukou E, Healy E, et al (2008) Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome Brain 131:205–217. doi: 10.1093/brain/awm282
  54. 54.
    Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular–kinetic theory of heat. Ann Phys 17:16Google Scholar
  55. 55.
    Stejskal TE, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  56. 56.
    Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445PubMedGoogle Scholar
  57. 57.
    Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219CrossRefPubMedGoogle Scholar
  58. 58.
    Behrens TEJ, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088. doi: 10.1002/mrm.10609 CrossRefPubMedGoogle Scholar
  59. 59.
    Behrens TEJ, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155. doi: 10.1016/j.neuroimage.2006.09.018 CrossRefPubMedGoogle Scholar
  60. 60.
    Watanabe M, Sakai O, Ozonoff A et al (2013) Age-related apparent diffusion coefficient changes in the normal brain. Radiology 266:575–582. doi: 10.1148/radiol.12112420 CrossRefPubMedGoogle Scholar
  61. 61.
    Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456PubMedGoogle Scholar
  62. 62.
    Song S-K, Sun S-W, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436CrossRefPubMedGoogle Scholar
  63. 63.
    Takahashi M, Hackney DB, Zhang G et al (2002) Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci USA 99:16192–16196. doi: 10.1073/pnas.252249999 CrossRefPubMedGoogle Scholar
  64. 64.
    Partridge SC, Mukherjee P, Henry RG et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage 22:1302–1314. doi: 10.1016/j.neuroimage.2004.02.038 CrossRefPubMedGoogle Scholar
  65. 65.
    Gulani V, Webb AG, Duncan ID, Lauterbur PC (2001) Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn Reson Med 45:191–195. doi: 10.1002/1522-2594(200102)45:2<191::AID-MRM1025>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  66. 66.
    Hüppi PS, Maier SE, Peled S et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590. doi: 10.1203/00006450-199810000-00019 CrossRefPubMedGoogle Scholar
  67. 67.
    Schneider JFL, Il'yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266. doi: 10.1007/s00234-003-1154-2 CrossRefPubMedGoogle Scholar
  68. 68.
    Wimberger DM, Roberts TP, Barkovich AJ et al (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19:28CrossRefPubMedGoogle Scholar
  69. 69.
    Sun S-W, Liang H-F, Cross AH, Song S-K (2008) Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. NeuroImage 40:1–10. doi: 10.1016/j.neuroimage.2007.11.049 CrossRefPubMedGoogle Scholar
  70. 70.
    Wu Q, Butzkueven H, Gresle M et al (2007) MR diffusion changes correlate with ultra-structurally defined axonal degeneration in murine optic nerve. NeuroImage 37:1138–1147. doi: 10.1016/j.neuroimage.2007.06.029 CrossRefPubMedGoogle Scholar
  71. 71.
    Bonekamp D, NAGAE LM, Degaonkar M et al (2007) Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. NeuroImage 34:733–742. doi: 10.1016/j.neuroimage.2006.09.020 CrossRefPubMedGoogle Scholar
  72. 72.
    Bisdas S, Bohning DE, Besenski N et al (2008) Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3T in healthy subjects: effect of the applied b-value. Am J Neuroradiol 29:1128–1133. doi: 10.3174/ajnr.A1044 CrossRefPubMedGoogle Scholar
  73. 73.
    Lepomäki VK, Paavilainen TP, et al (2011) Fractional anisotropy and mean diffusivity parameters of the brain white matter tracts in preterm infants: reproducibility of region-of-interest measurements. Pediatr Radiol. doi:  10.1007/s00247-011-2234-9
  74. 74.
    Cabezas M, Oliver A, Lladó X et al (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Prog Biomed 104:e158–e177. doi: 10.1016/j.cmpb.2011.07.015 CrossRefGoogle Scholar
  75. 75.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821. doi: 10.1006/nimg.2000.0582 CrossRefPubMedGoogle Scholar
  76. 76.
    Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851. doi: 10.1016/j.neuroimage.2005.02.018 CrossRefPubMedGoogle Scholar
  77. 77.
    Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505. doi: 10.1016/j.neuroimage.2006.02.024 CrossRefPubMedGoogle Scholar
  78. 78.
    Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427CrossRefPubMedGoogle Scholar
  79. 79.
    Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17:77–94CrossRefPubMedGoogle Scholar
  80. 80.
    Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. In: Minowski A (ed) Regional development of the brain in early life, Blackwell, Oxford, pp 3–70Google Scholar
  81. 81.
    Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217CrossRefPubMedGoogle Scholar
  82. 82.
    Aeby A, Liu Y, De Tiège X et al (2009) Maturation of thalamic radiations between 34 and 41 weeks' gestation: a combined voxel-based study and probabilistic tractography with diffusion tensor imaging. Am J Neuroradiol 30:1780–1786. doi: 10.3174/ajnr.A1660 CrossRefPubMedGoogle Scholar
  83. 83.
    Anjari M, Srinivasan L, Allsop JM et al (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage 35:1021–1027. doi: 10.1016/j.neuroimage.2007.01.035 CrossRefPubMedGoogle Scholar
  84. 84.
    Rose SE, Hatzigeorgiou X, Strudwick MW et al (2008) Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med 60:761–767. doi: 10.1002/mrm.21689 CrossRefPubMedGoogle Scholar
  85. 85.
    Hasegawa T, Yamada K, Morimoto M et al (2011) Development of corpus callosum in preterm infants is affected by the prematurity: in vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr Res 69:249–254. doi: 10.1203/PDR.0b013e3182084e54 CrossRefPubMedGoogle Scholar
  86. 86.
    Dudink J, Lequin M, Pul C et al (2007) Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatr Radiol 37:1216–1223. doi: 10.1007/s00247-007-0626-7 CrossRefPubMedGoogle Scholar
  87. 87.
    Ball G, Boardman JP, Rueckert D et al (2012) The effect of preterm birth on thalamic and cortical development. Cereb Cortex 22:1016–1024. doi: 10.1093/cercor/bhr176 CrossRefPubMedGoogle Scholar
  88. 88.
    Miller SP, Vigneron DB, Henry RG et al (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16:621–632. doi: 10.1002/jmri.10205 CrossRefPubMedGoogle Scholar
  89. 89.
    Lee AY, Jang SH, Lee E, et al (2012) Radiologic differences in white matter maturation between preterm and full-term infants: TBSS study. Pediatr Radiol. doi:  10.1007/s00247-012-2545-5
  90. 90.
    Jo HM, Cho HK, Jang SH, et al (2012) A comparison of microstructural maturational changes of the corpus callosum in preterm and full-term children: a diffusion tensor imaging study. Neuroradiology. doi:  10.1007/s00234-012-1042-8
  91. 91.
    Wang S, Fan G, Xu K, Wang C (2012) Potential of diffusion tensor MR imaging in the assessment of cognitive impairments in children with periventricular leukomalacia born preterm. Eur J Radiol. doi:  10.1016/j.ejrad.2012.06.032
  92. 92.
    Pandit AS, Robinson E, Aljabar P, et al. (2013) Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and Preterm birth. Cereb Cortex. doi:  10.1093/cercor/bht086
  93. 93.
    Vangberg TR, Skranes J, Dale AM et al (2006) Changes in white matter diffusion anisotropy in adolescents born prematurely. NeuroImage 32:1538–1548. doi: 10.1016/j.neuroimage.2006.04.230 CrossRefPubMedGoogle Scholar
  94. 94.
    Skranes J, Vangberg TR, Kulseng S et al (2007) Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 130:654–666. doi: 10.1093/brain/awm001 CrossRefPubMedGoogle Scholar
  95. 95.
    Constable RT, Ment LR, Vohr BR et al (2008) Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics 121:306–316. doi: 10.1542/peds.2007-0414 CrossRefPubMedGoogle Scholar
  96. 96.
    Mullen KM, Vohr BR, Katz KH et al (2011) Preterm birth results in alterations in neural connectivity at age 16 years. NeuroImage 54:2563–2570. doi: 10.1016/j.neuroimage.2010.11.019 CrossRefPubMedGoogle Scholar
  97. 97.
    Feldman HM, Lee ES, Loe IM et al (2012) White matter microstructure on diffusion tensor imaging is associated with conventional magnetic resonance imaging findings and cognitive function in adolescents born preterm. Dev Med Child Neurol 54:809–814. doi: 10.1111/j.1469-8749.2012.04378.x CrossRefPubMedGoogle Scholar
  98. 98.
    Kontis D, Catani M, Cuddy M et al (2009) Diffusion tensor MRI of the corpus callosum and cognitive function in adults born preterm. Neuroreport 20:424–428. doi: 10.1097/WNR.0b013e328325a8f9 CrossRefPubMedGoogle Scholar
  99. 99.
    Allin MPG, Kontis D, Walshe M et al (2011) White matter and cognition in adults who were born preterm. PLoS One 6:e24525. doi: 10.1371/journal.pone.0024525 CrossRefPubMedGoogle Scholar
  100. 100.
    Eikenes L, Løhaugen GC, Brubakk A-M et al (2011) Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. NeuroImage 54:1774–1785. doi: 10.1016/j.neuroimage.2010.10.037 CrossRefPubMedGoogle Scholar
  101. 101.
    Johansen-Berg H (2010) Behavioural relevance of variation in white matter microstructure. Curr Opin Neurol 1. doi:  10.1097/WCO.0b013e32833b7631
  102. 102.
    Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131(Pt 2):573–582. doi: 10.1093/brain/awm327 CrossRefPubMedGoogle Scholar
  103. 103.
    Berman JI, Glass HC, Miller SP et al (2008) Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. Am J Neuroradiol 30:120–124. doi: 10.3174/ajnr.A1304 CrossRefPubMedGoogle Scholar
  104. 104.
    Glass HC, Berman JI, Norcia AM et al (2010) quantitative fiber tracking of the optic radiation is correlated with visual-evoked potential amplitude in preterm infants. Am J Neuroradiol 31:1424–1429. doi: 10.3174/ajnr.A2110 CrossRefPubMedGoogle Scholar
  105. 105.
    Groppo M, Ricci D, Bassi L, et al. (2012) Development of the optic radiations and visual function after premature birth. Cortex 1–35. doi:  10.1016/j.cortex.2012.02.008
  106. 106.
    Lindqvist S, Skranes J, Eikenes L et al (2011) Visual function and white matter microstructure in very-low-birth-weight (VLBW) adolescents—a DTI study. Vis Res 51:2063–2070. doi: 10.1016/j.visres.2011.08.002 CrossRefPubMedGoogle Scholar
  107. 107.
    Reiman M, Parkkola R, Johansson R et al (2009) Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants. Pediatr Radiol 39:804–809. doi: 10.1007/s00247-009-1278-6 CrossRefPubMedGoogle Scholar
  108. 108.
    Mesulam M (2000) Brain, mind, and the evolution of connectivity. Brain Cogn 42:4–6. doi: 10.1006/brcg.1999.1145 CrossRefPubMedGoogle Scholar
  109. 109.
    Choi YY, Shamosh NA, Cho SH et al (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28:10323–10329. doi: 10.1523/JNEUROSCI.3259-08.2008 CrossRefPubMedGoogle Scholar
  110. 110.
    Mesulam M (2012) The evolving landscape of human cortical connectivity: facts and inferences. NeuroImage 62:2182–2189. doi: 10.1016/j.neuroimage.2011.12.033 CrossRefPubMedGoogle Scholar
  111. 111.
    Khong P, Qiu D, Yung A, Poon G (2006) Regional white matter anisotropy and general intelligence in preterm born children: a voxelwise analysis. Proceedings of the International Society for Magnetic Resonance in medicine: 3407Google Scholar
  112. 112.
    Counsell SJ, Edwards AD, Chew ATM et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–3208. doi: 10.1093/brain/awn268 CrossRefPubMedGoogle Scholar
  113. 113.
    van Kooij BJM, de Vries LS, Ball G, et al. (2011) Neonatal tract-based spatial statistics findings and outcome in preterm Infants. Am J Neuroradiol. doi:  10.3174/ajnr.A2723
  114. 114.
    Skranes J, Løhaugen GC, Martinussen M et al (2009) White matter abnormalities and executive function in children with very low birth weight. Neuroreport 20:263–266. doi: 10.1097/WNR.0b013e32832027fe CrossRefPubMedGoogle Scholar
  115. 115.
    Johnson MH, de Haan M (2010) Developmental cognitive neuroscience, 3rd edition. Wiley-Blackwell, Oxford, pp 1–316Google Scholar
  116. 116.
    Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402. doi: 10.1038/nrn2113 CrossRefPubMedGoogle Scholar
  117. 117.
    Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13:175–181. doi: 10.1016/j.tics.2009.01.001 CrossRefPubMedGoogle Scholar
  118. 118.
    Friederici AD, Alter K (2004) Lateralization of auditory language functions: a dynamic dual pathway model. Brain Lang 89:267–276. doi: 10.1016/S0093-934X(03)00351-1 CrossRefPubMedGoogle Scholar
  119. 119.
    Catani M, Allin MPG, Husain M et al (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104:17163–17168. doi: 10.1073/pnas.0702116104 CrossRefPubMedGoogle Scholar
  120. 120.
    Lebel C, Beaulieu C (2009) Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum Brain Mapp 30:3563–3573. doi: 10.1002/hbm.20779 CrossRefPubMedGoogle Scholar
  121. 121.
    Feldman HM, Lee ES, Yeatman JD, Yeom KW (2012) Language and reading skills in school-aged children and adolescents born preterm are associated with white matter properties on diffusion tensor imaging. Neuropsychologia 50:3348–3362. doi: 10.1016/j.neuropsychologia.2012.10.014 CrossRefPubMedGoogle Scholar
  122. 122.
    Northam GB, Liegeois F, Tournier JD et al (2012) Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm. Brain 135:3781–3798. doi: 10.1093/brain/aws276 CrossRefPubMedGoogle Scholar
  123. 123.
    Williams J, Lee KJ, Anderson PJ (2010) Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: a systematic review. Dev Med Child Neurol 52:232–237. doi: 10.1111/j.1469-8749.2009.03544.x CrossRefPubMedGoogle Scholar
  124. 124.
    Rose J, Butler EE, Lamont LE et al (2009) Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev Med Child Neurol 51:526–535. doi: 10.1111/j.1469-8749.2008.03231.x CrossRefPubMedGoogle Scholar
  125. 125.
    Northam GB, Liégeois F, Chong WK et al (2012) Speech and oromotor outcome in adolescents born preterm: relationship to motor tract integrity. J Pediatr 160:402–408.e1. doi: 10.1016/j.jpeds.2011.08.055 CrossRefPubMedGoogle Scholar
  126. 126.
    Pharoah PO, Cooke T, Cooke RW, Rosenbloom L (1990) Birthweight specific trends in cerebral palsy. Arch Dis Child 65:602–606CrossRefPubMedGoogle Scholar
  127. 127.
    Bax M, Goldstein M, Rosenbaum P et al (2005) Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 47:571–576. doi: 10.1017/S001216220500112X CrossRefPubMedGoogle Scholar
  128. 128.
    Scheck SM, Boyd RN, Rose SE (2012) New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: a systematic review. Dev Med Child Neurol 54:684–696. doi: 10.1111/j.1469-8749.2012.04332.x CrossRefPubMedGoogle Scholar
  129. 129.
    Rutherford MA, Supramaniam V, Ederies A et al (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52:505–521. doi: 10.1007/s00234-010-0700-y CrossRefPubMedGoogle Scholar
  130. 130.
    Johnson S, Marlow N (2011) Preterm birth and childhood psychiatric disorders. Pediatr Res 69:11R–18R. doi: 10.1203/PDR.0b013e318212faa0 CrossRefPubMedGoogle Scholar
  131. 131.
    Sansavini A, Guarini A, Caselli MC (2011) Preterm birth: neuropsychological profiles and atypical developmental pathways. Dev Disabil Res Revs 17:102–113. doi: 10.1002/ddrr.1105 CrossRefGoogle Scholar
  132. 132.
    Bhutta AT, Cleves MA, Casey PH et al (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737CrossRefPubMedGoogle Scholar
  133. 133.
    Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J (2009) Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124:717–728. doi: 10.1542/peds.2008-2816 CrossRefPubMedGoogle Scholar
  134. 134.
    Rogers CE, Anderson PJ, Thompson DK et al (2012) Regional cerebral development at term relates to school-age social–emotional development in very preterm children. J Am Acad Child Adolesc Psychiatry 51:181–191. doi: 10.1016/j.jaac.2011.11.009 CrossRefPubMedGoogle Scholar
  135. 135.
    Nagy Z, Westerberg H, Skare S et al (2003) Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res 54:672–679. doi: 10.1203/01.PDR.0000084083.71422.16 CrossRefPubMedGoogle Scholar
  136. 136.
    Stoll BJ, Hansen NI, Adams-Chapman I et al (2004) Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 292:2357–2365CrossRefPubMedGoogle Scholar
  137. 137.
    Chau V, Brant R, Poskitt KJ et al (2012) Postnatal infection is associated with widespread abnormalities of brain development in premature newborns. Pediatr Res 71:274–279. doi: 10.1038/pr.2011.40 CrossRefPubMedGoogle Scholar
  138. 138.
    Chau V, Poskitt KJ, McFadden D et al (2009) Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 66:127–129. doi: 10.1002/ana.21761 CrossRefGoogle Scholar
  139. 139.
    Hemels MA, Nijman J, Leemans A et al (2012) Cerebral white matter and neurodevelopment of preterm infants after coagulase-negative staphylococcal sepsis. Pediatr Crit Care Med 13:678–684. doi: 10.1097/PCC.0b013e3182455778 CrossRefPubMedGoogle Scholar
  140. 140.
    Hibbard JU, Wilkins I, Sun L et al (2010) Respiratory morbidity in late preterm births. JAMA 304:419–425CrossRefPubMedGoogle Scholar
  141. 141.
    Anjari M, Counsell SJ, Srinivasan L et al (2009) The association of lung disease with cerebral white matter abnormalities in preterm infants. Pediatrics 124:268–276. doi: 10.1542/peds.2008-1294 CrossRefPubMedGoogle Scholar
  142. 142.
    Ball G, Counsell SJ, Anjari M et al (2010) An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. NeuroImage 53:94–102. doi: 10.1016/j.neuroimage.2010.05.055 CrossRefPubMedGoogle Scholar
  143. 143.
    Doyle LW, Cheong J, Hunt RW et al (2010) Caffeine and brain development in very preterm infants. Ann Neurol 68:734–742. doi: 10.1002/ana.22098 CrossRefPubMedGoogle Scholar
  144. 144.
    Milgrom J, Newnham C, Anderson PJ et al (2010) Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr Res 67:330–335. doi: 10.1203/PDR.0b013e3181cb8e2f CrossRefPubMedGoogle Scholar
  145. 145.
    Als H, Duffy FH, McAnulty GB et al (2004) Early experience alters brain function and structure. Pediatrics 113:846–857CrossRefPubMedGoogle Scholar
  146. 146.
    Ni H, Kavcic V, Zhu T et al (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27:1776–1781PubMedGoogle Scholar
  147. 147.
    Magnotta VA, Matsui JT, Liu D et al (2012) Multicenter reliability of diffusion tensor imaging. Brain Connect 2:345–355. doi: 10.1089/brain.2012.0112 CrossRefPubMedGoogle Scholar
  148. 148.
    Fox RJ, Sakaie K, Lee JC et al (2012) A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. Am J Neuroradiol 33:695–700. doi: 10.3174/ajnr.A2844 CrossRefPubMedGoogle Scholar
  149. 149.
    Ennis DB, Kindlmann G (2005) Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn Reson Med 55:136–146. doi: 10.1002/mrm.20741 CrossRefGoogle Scholar
  150. 150.
    Engelbrecht V, Scherer A, Rassek M et al (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418. doi: 10.1148/radiol.2222010492 CrossRefPubMedGoogle Scholar
  151. 151.
    Mädler B, Drabycz SA, Kolind SH et al (2008) Is diffusion anisotropy an accurate monitor of myelination? Magn Reson Imaging 26:874–888. doi: 10.1016/j.mri.2008.01.047 CrossRefPubMedGoogle Scholar
  152. 152.
    Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016. doi: 10.1016/j.neuroimage.2012.03.072 CrossRefPubMedGoogle Scholar
  153. 153.
    Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35:1459–1472. doi: 10.1016/j.neuroimage.2007.02.016 CrossRefPubMedGoogle Scholar
  154. 154.
    Jeurissen B, Leemans A, Jones DK et al (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32:461–479. doi: 10.1002/hbm.21032 CrossRefPubMedGoogle Scholar
  155. 155.
    Sporns O, Tononi G, Kötter R (2005) The Human Connectome: a structural description of the human brain. PLoS Comput Biol 1:e42. doi: 10.1371/journal.pcbi.0010042 CrossRefPubMedGoogle Scholar
  156. 156.
    Ball G, Boardman JP, Aljabar P, et al (2012) The influence of preterm birth on the developing thalamocortical connectome. Cortex. 2013 Jun;49(6):1711–1721. doi:  10.1016/j.cortex.2012.07.006. Epub 2012 Aug 9
  157. 157.
    Tymofiyeva O, Hess CP, Ziv E et al (2012) Towards the “baby connectome”: mapping the structural connectivity of the newborn brain. PLoS One 7:e31029. doi: 10.1371/journal.pone.0031029 CrossRefPubMedGoogle Scholar
  158. 158.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi: 10.1038/nrn2575 CrossRefPubMedGoogle Scholar
  159. 159.
    Wolz R, Aljabar P, Hajnal JV, et al. (2012) Medical image analysis. Med Image Anal 1–12. doi:  10.1016/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anand S. Pandit
    • 1
  • Gareth Ball
    • 1
  • A. David Edwards
    • 1
  • Serena J. Counsell
    • 1
  1. 1.Centre for the Developing Brain, Department of Perinatal Imaging, Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK

Personalised recommendations