Advertisement

Neuroradiology

, Volume 55, Issue 10, pp 1197–1203 | Cite as

Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom

  • Makoto Sasaki
  • Kohsuke Kudo
  • Timothé Boutelier
  • Fabrice Pautot
  • Soren Christensen
  • Ikuko Uwano
  • Jonathan Goodwin
  • Satomi Higuchi
  • Kenji Ito
  • Fumio Yamashita
Diagnostic Neuroradiology

Abstract

Introduction

A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.

Methods

The digital phantom data, in which concentration–time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.

Results

CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91–0.92, 0.97–0.99, and 0.91–0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81–0.82).

Conclusions

Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.

Keywords

Perfusion computed tomography Digital phantom Bayesian estimation algorithm Mean transit time Cerebral blood flow 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid for Strategic Medical Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

MS has served on the advisory board for Olea Medical. TB and FP are employees of Olea Medical.

References

  1. 1.
    Lev MH, Segal AZ, Farkas J, Hossain ST, Putman C, Hunter GJ, Budzik R, Harris GJ, Buonanno FS, Ezzeddine MA, Chang Y, Koroshetz WJ, Gonzalez RG, Schwamm LH (2001) Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 32:2021–2028PubMedCrossRefGoogle Scholar
  2. 2.
    Kudo K, Sasaki M, Ogasawara K, Terae S, Ehara S, Shirato H (2009) Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms. Radiology 251:241–249PubMedCrossRefGoogle Scholar
  3. 3.
    Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, Ogasawara K (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254:200–209PubMedCrossRefGoogle Scholar
  4. 4.
    Sasaki M, Kudo K, Ogasawara K, Fujiwara S (2009) Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease: comparison with quantitative single-photon emission CT. Am J Neuroradiol 30:188–193PubMedCrossRefGoogle Scholar
  5. 5.
    Fahmi F, Marquering HA, Streekstra GJ, Beenen LF, Velthuis BK, Vanbavel E, Majoie CB (2012) Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages. Am J Neuroradiol 33:2074–2080PubMedCrossRefGoogle Scholar
  6. 6.
    Kudo K, Christensen S, Sasaki M, Ostergaard L, Shirato H, Ogasawara K, Wintermark M, Warach S, Warach (2013) Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 267:201–211PubMedCrossRefGoogle Scholar
  7. 7.
    Mouridsen K, Friston K, Hjort N, Gyldensted L, Ostergaard L, Kiebel S (2006) Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. NeuroImage 33:570–579PubMedCrossRefGoogle Scholar
  8. 8.
    Boutelier T, Kudo K, Pautot F, Sasaki M (2012) Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging. IEEE Trans Med Imaging 31:1381–1395PubMedCrossRefGoogle Scholar
  9. 9.
    Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174PubMedCrossRefGoogle Scholar
  10. 10.
    Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717PubMedCrossRefGoogle Scholar
  11. 11.
    Hanson EH, Roach CJ, Day KJ, Peters KR, Bradley WG Jr, Ghosh K, Patton PW, McMurray RC, Orrison WW Jr (2013) Assessment of the tracer delay effect in whole-brain computed tomography perfusion: results in patients without known neuroanatomic abnormalities. J Comput Assist Tomogr 37:212–221PubMedCrossRefGoogle Scholar
  12. 12.
    Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Sohngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8:141–150PubMedCrossRefGoogle Scholar
  13. 13.
    van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45:477–485PubMedCrossRefGoogle Scholar
  14. 14.
    Calamante F, Willats L, Gadian DG, Connelly A (2006) Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 55:1180–1185PubMedCrossRefGoogle Scholar
  15. 15.
    Christensen S, Mouridsen K, Wu O, Hjort N, Karstoft H, Thomalla G, Rother J, Fiehler J, Kucinski T, Ostergaard L (2009) Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 40:2055–2061PubMedCrossRefGoogle Scholar
  16. 16.
    Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517PubMedCrossRefGoogle Scholar
  17. 17.
    Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, Chalk JB, Fink JN, Kimber TE, Schultz D, Hand PJ, Frayne J, Hankey G, Muir K, Gerraty R, Tress BM, Desmond PM (2008) Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7:299–309PubMedCrossRefGoogle Scholar
  18. 18.
    Ma H, Parsons MW, Christensen S, Campbell BC, Churilov L, Connelly A, Yan B, Bladin C, Phan T, Barber AP, Read S, Hankey GJ, Markus R, Wijeratne T, Grimley R, Mahant N, Kleinig T, Sturm J, Lee A, Blacker D, Gerraty R, Krause M, Desmond PM, McBride SJ, Carey L, Howells DW, Hsu CY, Davis SM, Donnan GA (2012) A multicentre, randomized, double-blinded, placebo-controlled Phase III study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND). Int J Stroke 7:74–80PubMedCrossRefGoogle Scholar
  19. 19.
    Calamante F, Christensen S, Desmond PM, Ostergaard L, Davis SM, Connelly A (2010) The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 41:1169–1174PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Makoto Sasaki
    • 1
  • Kohsuke Kudo
    • 1
  • Timothé Boutelier
    • 2
  • Fabrice Pautot
    • 2
  • Soren Christensen
    • 3
  • Ikuko Uwano
    • 1
  • Jonathan Goodwin
    • 1
  • Satomi Higuchi
    • 1
  • Kenji Ito
    • 1
  • Fumio Yamashita
    • 1
  1. 1.Division of Ultrahigh Field MRI, Institute for Biomedical SciencesIwate Medical UniversityYahabaJapan
  2. 2.Department of Research & InnovationOlea MedicalLa CiotatFrance
  3. 3.Department of Neurology and Radiology, Royal Melbourne HospitalUniversity of MelbourneVictoriaAustralia

Personalised recommendations