Advertisement

Neuroradiology

, Volume 55, Issue 7, pp 853–859 | Cite as

Detection of irreversible changes in susceptibility-weighted images after whole-brain irradiation of children

  • S. PetersEmail author
  • R. Pahl
  • A. Claviez
  • O. Jansen
Diagnostic Neuroradiology

Abstract

Introduction

Whole-brain irradiation is part of the therapy protocol for patients with medulloblastomas. Side effects and complications of radiation can be detected by follow-up magnetic resonance imaging (MRI). Susceptibility-weighted images (SWI) can detect even very small amounts of residual blood that cannot be shown with conventional MRI. The purpose of this study was to determine when and where SWI lesions appear after whole-brain irradiation.

Methods

MRI follow-up of seven patients with medulloblastoma who were treated with whole-brain irradiation were analyzed retrospectively. SWI were part of the initial and follow-up MRI protocol. De novo SWI lesions, localization, and development over time were documented.

Results

At time of irradiation, mean age of the patients was 13 years (±4 years). Earliest SWI lesions were detected 4 months after radiation treatment. In all patients, SWI lesions accumulated over time, although the individual number of SWI lesions varied. No specific dissemination of SWI lesions was observed.

Conclusion

Whole-brain irradiation can cause relatively early dot-like SWI lesions. The lesions are irreversible and accumulate over time. Histopathological correlation and clinical impact of these SWI lesions should be investigated.

Keywords

SWI Medulloblastom Irradiation Pediatrics 

Abbreviations

SWI

Susceptibility weighted imaging

WHO

World Health Organization

Notes

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Frühwald MC, Rutkowski S (2011) Tumors of the central nervous system in children and adolescents. Dtsch Arztebl 108(22):390–397Google Scholar
  2. 2.
    Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LAG, Eheman C et al (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736PubMedCrossRefGoogle Scholar
  3. 3.
    Kortmann RD, Kühl J, Timmermann B, Mittler U, Urban C, Budach V et al (2000) Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ’91. Int J Radiat Oncol Biol Phys 46(2):269–279PubMedCrossRefGoogle Scholar
  4. 4.
    Ramaswamy V, Northcott PA, Taylor MD (2011) FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genet 204(11):577–588PubMedCrossRefGoogle Scholar
  5. 5.
    Khatua S, Sadighi ZS, Pearlman ML, Bochare S, Vats TS (2012) Brain tumors in children—current therapies and newer directions. Indian J Pediatr 79(7):922–927PubMedCrossRefGoogle Scholar
  6. 6.
    Pollack IF (2011) Multidisciplinary management of childhood brain tumors: a review of outcomes, recent advances, and challenges. J Neurosurg Pediatr 8(2):135–148PubMedCrossRefGoogle Scholar
  7. 7.
    Rieken S, Mohr A, Habermehl D, Welzel T, Lindel K, Witt O et al (2011) Outcome and prognostic factors of radiation therapy for medulloblastoma. Int J Radiat Oncol Biol Phys 81(3):e7–e13PubMedCrossRefGoogle Scholar
  8. 8.
    Jakacki RI, Burger PC, Zhou T, Holmes EJ, Kocak M, Onar A et al (2012) Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a children’s oncology group phase I/II study. J Clin Oncol 30(21):2648–2653PubMedCrossRefGoogle Scholar
  9. 9.
    Packer RJ, Sutton LN, Elterman R, Lange B, Goldwein J, Nicholson HS et al (1994) Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 81(5):690–698PubMedCrossRefGoogle Scholar
  10. 10.
    Von Hoff K, Hinkes B, Gerber NU, Deinlein F, Mittler U, Urban C et al (2009) Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur J Cancer 45(7):1209–1217CrossRefGoogle Scholar
  11. 11.
    Frange P, Alapetite C, Gaboriaud G, Bours D, Zucker JM, Zerah M et al (2009) From childhood to adulthood: long-term outcome of medulloblastoma patients. The Institut Curie experience (1980–2000). J Neurooncol 95(2):271–279PubMedCrossRefGoogle Scholar
  12. 12.
    Vázquez E, Delgado I, Sánchez-Montañez A, Barber I, Sánchez-Toledo J, Enríquez G (2011) Side effects of oncologic therapies in the pediatric central nervous system: update on neuroimaging findings. Radiographics 31(4):1123–1139PubMedCrossRefGoogle Scholar
  13. 13.
    Lupo JM, Chuang CF, Chang SM, Barani IJ, Jimenez B, Hess CP et al (2012) 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 82(3):e493–e500PubMedCrossRefGoogle Scholar
  14. 14.
    Noyce AJ, McCrae S, Gawler J, Evanson J (2010) Teaching neuroimages: microhemorrhages resulting from cranial radiotherapy in childhood. Neurology 75(1):e2–e3PubMedCrossRefGoogle Scholar
  15. 15.
    Rauscher A, Sedlacik J, Deistung A, Mentzel H-J, Reichenbach JR (2006) Susceptibility weighted imaging: data acquisition, image reconstruction and clinical applications. Z Med Phys 16(4):240–250PubMedGoogle Scholar
  16. 16.
    Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ et al (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24(1):41–51PubMedCrossRefGoogle Scholar
  17. 17.
    Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30(2):232–252PubMedCrossRefGoogle Scholar
  18. 18.
    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR 30(1):19–30PubMedCrossRefGoogle Scholar
  19. 19.
    Tsuboyama T, Imaoka I, Shimono T, Nakatsuka T, Ashikaga R, Okuaki T et al (2008) T2*-sensitized high-resolution magnetic resonance venography using 3D-PRESTO technique. Magn Reson Med Sci 7(2):73–77PubMedCrossRefGoogle Scholar
  20. 20.
    Moonen CT, Liu G, Van Gelderen P, Sobering G (1992) A fast gradient-recalled MRI technique with increased sensitivity to dynamic susceptibility effects. Magn Reson Med 26(1):184–189PubMedCrossRefGoogle Scholar
  21. 21.
    Lew SM, Morgan JN, Psaty E, Lefton DR, Allen JC, Abbott R (2006) Cumulative incidence of radiation-induced cavernomas in long-term survivors of medulloblastoma. J Neurosurg 104(2 Suppl):103–107PubMedGoogle Scholar
  22. 22.
    Jain R, Robertson PL, Gandhi D, Gujar SK, Muraszko KM, Gebarski S (2005) Radiation-induced cavernomas of the brain. AJNR Am J Neuroradiol 26(5):1158–1162PubMedGoogle Scholar
  23. 23.
    Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B (2011) Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst 27(3):445–453PubMedCrossRefGoogle Scholar
  24. 24.
    Koike S, Aida N, Hata M, Fujita K, Ozawa Y, Inoue T (2004) Asymptomatic radiation-induced telangiectasia in children after cranial irradiation: frequency, latency, and dose relation. Radiology 230(1):93–99PubMedCrossRefGoogle Scholar
  25. 25.
    Martínez-Lage JF, De la Fuente I, Rosde San Pedro J, Fuster JL, Pérez-Espejo MA, Herrero MT (2008) Cavernomas in children with brain tumors: a late complication of radiotherapy. Neurocirugia (Astur) 19(1):50–54Google Scholar
  26. 26.
    Nimjee SM, Powers CJ, Bulsara KR (2006) Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 21(1):e4PubMedCrossRefGoogle Scholar
  27. 27.
    Burn S, Gunny R, Phipps K, Gaze M, Hayward R (2007) Incidence of cavernoma development in children after radiotherapy for brain tumors. J Neurosurg 106(5 Suppl):379–383PubMedGoogle Scholar
  28. 28.
    Furuse M, Miyatake S-I, Kuroiwa T (2005) Cavernous malformation after radiation therapy for astrocytoma in adult patients: report of 2 cases. Acta Neurochir 147(10):1097–1101, discussion 1101PubMedCrossRefGoogle Scholar
  29. 29.
    Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG et al (2008) Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlenther Onkol 184(5):276–280PubMedCrossRefGoogle Scholar
  30. 30.
    Baumgartner JE, Ater JL, Ha CS, Kuttesch JF, Leeds NE, Fuller GN et al (2003) Pathologically proven cavernous angiomas of the brain following radiation therapy for pediatric brain tumors. Pediatr Neurosurg 39(4):201–207PubMedCrossRefGoogle Scholar
  31. 31.
    Washington CW, McCoy KE, Zipfel GJ (2010) Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. Neurosurg Focus 29(3):E7PubMedCrossRefGoogle Scholar
  32. 32.
    Münter MW, Karger CP, Reith W, Schneider HM, Peschke P, Debus J (1999) Delayed vascular injury after single high-dose irradiation in the rat brain: histologic immunohistochemical, and angiographic studies. Radiology 212(2):475–482PubMedGoogle Scholar
  33. 33.
    Kamiryo T, Kassell NF, Thai QA, Lopes MB, Lee KS, Steiner L (1996) Histological changes in the normal rat brain after gamma irradiation. Acta Neurochir 138(4):451–459PubMedCrossRefGoogle Scholar
  34. 34.
    Reinhold HS, Hopewell JW (1980) Late changes in the architecture of blood vessels of the rat brain after irradiation. Br J Radiol 53(631):693–696PubMedCrossRefGoogle Scholar
  35. 35.
    Hopewell JW, Calvo W, Campling D, Reinhold HS, Rezvani M, Yeung TK (1989) Effects of radiation on the microvasculature. Implications for normal-tissue damage. Front Radiat Ther Oncol 23:85–95PubMedGoogle Scholar
  36. 36.
    Brown WR, Thore CR, Moody DM, Robbins ME, Wheeler KT (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res 164(5):662–668PubMedCrossRefGoogle Scholar
  37. 37.
    Karger CP, Münter MW, Heiland S, Peschke P, Debus J, Hartmann GH (2002) Dose-response curves and tolerance doses for late functional changes in the normal rat brain after stereotactic radiosurgery evaluated by magnetic resonance imaging: influence of end points and follow-up time. Radiat Res 157(6):617–625PubMedCrossRefGoogle Scholar
  38. 38.
    Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB (1994) Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology 193(3):629–636PubMedGoogle Scholar
  39. 39.
    Poussaint TY, Siffert J, Barnes PD, Pomeroy SL, Goumnerova LC, Anthony DC et al (1995) Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. AJNR 16(4):693–699PubMedGoogle Scholar
  40. 40.
    Ku H-L, Chi N-F (2011) Cerebral lobar microhemorrhages detection by high magnetic field susceptibility weighted image: a potential diagnostic neuroimage technique of Alzheimer’s disease. Med Hypotheses 76(6):840–842PubMedCrossRefGoogle Scholar
  41. 41.
    Charidimou A, Jäger HR, Werring DJ (2012) Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia. Exp Gerontol 7(11):843–852CrossRefGoogle Scholar
  42. 42.
    Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C et al (2010) Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 119(3):291–302PubMedCrossRefGoogle Scholar
  43. 43.
    Werring DJ, Gregoire SM, Cipolotti L (2010) Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 299(1–2):131–135PubMedCrossRefGoogle Scholar
  44. 44.
    Poels MMF, Ikram MA, Van der Lugt A, Hofman A, Niessen WJ, Krestin GP et al (2012) Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology 78(5):326–333PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of NeuroradiologyUniversity of Schleswig-HolsteinKielGermany
  2. 2.Clinic for RadiooncologyUniversity of Schleswig-HolsteinKielGermany
  3. 3.Clinic for PaediatricsUniversity of Schleswig-HolsteinKielGermany

Personalised recommendations