Neuroradiology

, Volume 54, Issue 8, pp 883–892 | Cite as

Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

  • Faten M. Aldhafeeri
  • Ian Mackenzie
  • Tony Kay
  • Jamaan Alghamdi
  • Vanessa Sluming
Functional Neuroradiology

Abstract

Introduction

Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions.

Methods

Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects.

Results

Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system.

Conclusion

Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations.

Keywords

Tinnitus Cortical thickness DTI MRI Brain 

References

  1. 1.
    Jastreboff PJ, Hazell J (2004) Tinnitus retraining therapy: implementing the neurophysiological model, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Vio MM, Holme RH (2005) Hearing loss and tinnitus: 250 million people and a US $10 billion potential market. Drug Discov Today 10(19):1263–1265PubMedCrossRefGoogle Scholar
  3. 3.
    Elgoyhen AB, Langguth B (2010) Pharmacological approaches to the treatment of tinnitus. Drug Discov Today 15(7–8):300–305PubMedCrossRefGoogle Scholar
  4. 4.
    Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140(1–2):165–172PubMedCrossRefGoogle Scholar
  5. 5.
    Lockwood AH et al (1998) The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50:114–120PubMedCrossRefGoogle Scholar
  6. 6.
    Muhinickel W et al (1998) Reorganization of auditory cortex in tinnitus. Psychology 95:10340–10343Google Scholar
  7. 7.
    Mirz F et al (2000) Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli. Neuro Report 11(3):633–637Google Scholar
  8. 8.
    Mirz F et al (1999) Positron emission tomography of cortical centers of tinnitus. Hear Res 134(1–2):133–144PubMedCrossRefGoogle Scholar
  9. 9.
    Muhlau M et al (2006) Structural brain changes in tinnitus. Cereb Cortex 16(9):1283–1288PubMedCrossRefGoogle Scholar
  10. 10.
    Landgrebe M et al (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. NeuroImage 46(1):213–218PubMedCrossRefGoogle Scholar
  11. 11.
    Leaver AM et al (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69(1):33–43PubMedCrossRefGoogle Scholar
  12. 12.
    Lee Y-J et al (2007) Evaluation of white matter structures in patients with tinnitus using diffusion tensor imaging. J Clin Neurosci 14(6):515–519PubMedCrossRefGoogle Scholar
  13. 13.
    Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27(5):392–401PubMedCrossRefGoogle Scholar
  14. 14.
    Mirz F et al (2000) Cortical networks subserving the perception of tinnitus—a PET study. Acta Otolaryngol 543:241–243CrossRefGoogle Scholar
  15. 15.
    Geuze E et al (2008) Thinner prefrontal cortex in veterans with posttraumatic stress disorder. NeuroImage 41(3):675–681PubMedCrossRefGoogle Scholar
  16. 16.
    Fagelson MA (2007) The association between tinnitus and posttraumatic stress disorder. Am J Audiol 16(2):107–117PubMedCrossRefGoogle Scholar
  17. 17.
    Moller AR et al (2010) Textbook of tinnitus. Springer New, New YorkGoogle Scholar
  18. 18.
    Makris N et al (2007) Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 17(6):1364–1375PubMedCrossRefGoogle Scholar
  19. 19.
    Li L et al (2007) Prefrontal white matter abnormalities in young adult with major depressive disorder: a diffusion tensor imaging study. Brain Res 1168:124–128PubMedCrossRefGoogle Scholar
  20. 20.
    Cullen KR et al (2010) Altered white matter microstructure in adolescents with major depression: a preliminary study. J Am Acad Child Adolesc Psychiatr 49(2):173–183, e1Google Scholar
  21. 21.
    Konrad A et al (2010) Disturbed structural connectivity is related to inattention and impulsivity in adult attention deficit hyperactivity disorder. Eur J Neurosci 31(5):912–919PubMedCrossRefGoogle Scholar
  22. 22.
    Farhadi M et al (2010) Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI. J Cereb Blood Flow Metab 30(4):864–870PubMedCrossRefGoogle Scholar
  23. 23.
    Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8(4):221–254PubMedCrossRefGoogle Scholar
  24. 24.
    Andersson G (2002) Psychological aspects of tinnitus and the application of cognitive–behavioral therapy. Clin Psychol Rev 22(7):977–990PubMedCrossRefGoogle Scholar
  25. 25.
    Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24(1):167–202PubMedCrossRefGoogle Scholar
  26. 26.
    Cohen JD et al (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625):604–608PubMedCrossRefGoogle Scholar
  27. 27.
    Rossiter S, Stevens C, Walker G (2006) Tinnitus and its effect on working memory and attention. J Speech Lang Hear Res 49(1):150–160PubMedCrossRefGoogle Scholar
  28. 28.
    Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27(11):676–682Google Scholar
  29. 29.
    Smits M et al (2007) Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49(8):669–679PubMedCrossRefGoogle Scholar
  30. 30.
    Giraud AL et al (1999) A selective imaging of tinnitus. Neuro Report 10(1):1–5Google Scholar
  31. 31.
    Schneider P et al (2009) Reduced volume of Heschl's gyrus in tinnitus. NeuroImage 45(3):927–939PubMedCrossRefGoogle Scholar
  32. 32.
    Catani M, Jones DK, Donato R (2003) Occipito-temporal connections in the human brain. Brain 126(9):2093PubMedCrossRefGoogle Scholar
  33. 33.
    Wang F et al (2008) Abnormal corpus callosum integrity in bipolar disorder: a diffusion tensor imaging study. Biol Psychiatry 64(8):730–733PubMedCrossRefGoogle Scholar
  34. 34.
    Cao Q et al (2010) The macrostructural and microstructural abnormalities of corpus callosum in children with attention deficit/hyperactivity disorder: a combined morphometric and diffusion tensor MRI study. Brain Res 1310:172–180PubMedCrossRefGoogle Scholar
  35. 35.
    Jackowski AP et al (2008) Corpus callosum in maltreated children with posttraumatic stress disorder: a diffusion tensor imaging study. Psychiatr Res: Neuroimaging 162(3):256–261CrossRefGoogle Scholar
  36. 36.
    Cook ND (1986) The brain code. Methuen & Co, New YorkGoogle Scholar
  37. 37.
    Hausmann M (2010) Hormonal effects on the plasticity of cognitive brain functions. Wiley Interdiscip Rev: Cogn Sci 1(4):607–612Google Scholar
  38. 38.
    Posner MI, Petersen SE (1989) The attention system of the human brain. Annu Rev Neurosci 13:25–42Google Scholar
  39. 39.
    Kitterle FL (1995) Hemispheric communication: mechanisms and models. Lawrence Erlbaum Associates, New JerseyGoogle Scholar
  40. 40.
    Lin YC et al (2008) Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: changes in radial diffusivity and diffusion anisotropy. J Magn Reson Imaging 28(3):598–603PubMedCrossRefGoogle Scholar
  41. 41.
    Voineskos AN et al (2012) Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging 33(1):21–34PubMedCrossRefGoogle Scholar
  42. 42.
    Salat DH et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730PubMedCrossRefGoogle Scholar
  43. 43.
    Nobel W (2000) Self-reports about tinnitus and about cochlear implants. Ear Hear 21(4):505–595Google Scholar
  44. 44.
    Shaw P et al (2006) Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 63(5):540–549PubMedCrossRefGoogle Scholar
  45. 45.
    Narr KL et al (2005) Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15(6):708–719PubMedCrossRefGoogle Scholar
  46. 46.
    Basser PJ (1995) Inferring microstructural features and the physiological state of tissue from diffusion-weighted images. NMR Biomed 8:333–344PubMedCrossRefGoogle Scholar
  47. 47.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7-8):435–455PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Faten M. Aldhafeeri
    • 1
    • 2
  • Ian Mackenzie
    • 3
  • Tony Kay
    • 3
  • Jamaan Alghamdi
    • 1
    • 4
  • Vanessa Sluming
    • 1
    • 5
  1. 1.Department of Medical Imaging, School of Health SciencesThe University of LiverpoolLiverpoolUK
  2. 2.Ministry of Health, Radiology DepartmentKing Khalid General HospitalHafral-batinKingdom of Saudi Arabia
  3. 3.Aintree University Hospitals NHS Foundation TrustLiverpoolUK
  4. 4.Physics Department, Faculty of SciencesKing Abdul Aziz UniversityJeddahKingdom of Saudi Arabia
  5. 5.Magnetic Resonance and Image Analysis Research CentreLiverpoolUK

Personalised recommendations