Advertisement

Atrophy: When too much atrophy is too little brain

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Huckman MS (2003) Imaging the normal aging brain. Riv Neuroradiol 16(sup2):91–99

  2. 2.

    Alzheimer’s Association (2009) Alzheimer’s disease facts and figures. Alzheimers Dementia 2009; 5

  3. 3.

    Centers for Disease Control and Prevention National Center for Chronic Disease Prevention and Health Promotion. Unrealized prevention opportunities: Reducing the health and economic burden of chronic illness.

  4. 4.

    Luengo-Fernadez R, Leal J, Dementia GA (2010) The economic burden of dementia and associated research funding in the UK. Alzheimer’s Research Trust, Cambridge 2010

  5. 5.

    Knapp M, Prince M, Albanese E et al (2007) Dementia UK: a report into the prevalence and cost of dementia prepared by the Personal Social Services Research Unit (PSSRU) at the London School of Economics and the Institute of Psychiatry at King’s College London, for the Alzheimer’s Society. Alzheimer’s Society, London

  6. 6.

    Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77

  7. 7.

    Bastos Leite AJ, Scheltens P, Barkhof F (2004) Pathological aging of the brain: an overview. Top Magn Reson Imaging 15:369–389

  8. 8.

    Sullivan EV, Pfefferbaum A (2007) Neuroradiological characterization of normal adult ageing. Br J Radiol 80:S99–S108

  9. 9.

    Ge Y, Grossman RI, Babb JS et al (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23:1327–1333

  10. 10.

    Wang L, Swank JS, Glick IE et al (2003) Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. NeuroImage 20:667–682

  11. 11.

    Galluzzi S, Beltramello A, Filippi M, Frisoni GB (2008) Ageing. Neurol Sci 29:S296–S300

  12. 12.

    Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-basedmorphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21–36

  13. 13.

    Smith CD, Chebrolu H, Wekstein DR et al (2007) Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28:1075–1087

  14. 14.

    Pagani E, Agosta F, Rocca MA et al (2008) Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. NeuroImage 41:657–667

  15. 15.

    Sowell ER, Peterson BS, Thompson PM et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

  16. 16.

    Abe O, Yamasue H, Aoki S et al (2008) Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 29:102–116

  17. 17.

    Cowell PE, Sluming VA, Wilkinson ID, Cezayirli E, Romanowski CAJ, Webb JA, Keller SS, Mayes A, Roberts N (2007) Effects of sex and age on regional prefrontal brain volume in two human cohorts. Eur J Neurosci 25(1):307–318

  18. 18.

    Anderson VC, Litvack ZN, Kaye JA (2005) Magnetic resonance approaches to brain aging and Alzheimer diseaseYassociated neuropathology. Top Magn Reson Imaging 16(6):439–452

  19. 19.

    Fennema-Notestine C, Hagler DJ Jr, McEvoy LK, Fleisher AS, Wu EH, Karow DS, Dale AM, the ADNI (2009) Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Human Brain Mapping 21:3–12

  20. 20.

    Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

  21. 21.

    Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1:13–21

  22. 22.

    Ellis KA, Rowe CC, Szoeke CEI, Villemagne VL, Ames D, Chételat G, Martins RN, Masters CL, Fripp J, Acosta O, Raniga P, Bourgeat PT, Salvado O (2011) Advances in structural and molecular neuroimaging in Alzheimer’s disease. MJA 194:S20–S23

  23. 23.

    Whitwell JL, Jack CR Jr (2007) Neuroimaging in Dementia. Neurol Clin 25:843–857

  24. 24.

    Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 53(2):181–188

  25. 25.

    Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, Fox NC (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5(10):828–834

  26. 26.

    Whitwell JL, Jack CR Jr (2005) Comparisons between Alzheimer disease, frontotemporal lobar degeneration and normal aging with brain mapping. Top Magn Reson Imaging 16(6):409–425

  27. 27.

    Watson R, Blamire AM, O’Brien JT (2009) Magnetic resonance imaging in Lewy body dementias. Dement Geriatr Cogn Disord 28:493–506

  28. 28.

    Apostolova LG, Thompson PM (2008) Mapping progressive brain structural changes in early Alzheimer’s disease and mild cognitive impairment. Neuropsychologia 46:1597–1612

  29. 29.

    Whitwell JL, Shiung MM, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2008) MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70:512–520

  30. 30.

    Scheltens P et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972

  31. 31.

    Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA (1995) Visual assess- ment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242:557–560

  32. 32.

    DeCarli C et al (2007) Alzheimer’s Disease Cooperative Study Group. Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol 64:108–115

  33. 33.

    van der Flier WM et al (2005) Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J Neurol Neurosurg Psychiatry 76:1497–1500

  34. 34.

    Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, Thompson P, Fox NC (2009) A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging 30(11):1711–1723

  35. 35.

    Karas G et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. Am J Neuroradiol 29:944–949

  36. 36.

    Giesel FL, Thomann PA, Hahn HK, Politi M, Stieltjes B, Weber MA, Pantel J, Wilkinson ID, Griffiths PD, Schröder J, Essig M (2008) Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging. Eur J Radiol 66(2):268–273

  37. 37.

    Kempton MJ, Ettinger U, Schmechtig A, Winter EM, Smith L, McMorris T, Wilkinson ID, Williams SC, Smith MS (2009) Effects of acute dehydration on brain morphology in healthy humans. Human Brain Mapping 30:291–298

  38. 38.

    Dickson JM, Weavers HM, Mitchell N, Winter EM, Wilkinson ID, VanBeek EJ, Griffiths PD (2003) Choice of cross size in stereology-a cautionary note. Neuroradiology 45(12):896–899

  39. 39.

    Cotter D, Miszkiel K, Al-Sarraj S, Wilkinson ID, Paley M, Harrison MJG, Hall-Craggs MA, Everall IP (1999) The assessment of postmortem brain volume; a comparison of stereological and planimetric methodologies. Neuroradiology 41:493–496

  40. 40.

    Wilkinson ID, Paley MNJ, Miszkiel KA, Hall-Craggs MA, Kendall BE, Chinn RJS, Harrison MJG (1997) Cerebral volumes and spectroscopic proton metabolites: is sex important? Magn Reson Imaging 15(2):243–248

  41. 41.

    Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. NeuroImage 11(6 Pt 1):805–821

  42. 42.

    Farrow TF, Thiyagesh SN, Wilkinson ID, Parks RW, Ingram I, Woodruff PW (2007) Fronto-temporal-lobe atrophy in early-stage Alzheimer’s disease identified using an improved detection methodology. Psychiatry Res 155(1):11–19

  43. 43.

    Freeborough PA, Fox NC (1997) The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging 16(5):623–629

  44. 44.

    Fischl B, Dale A (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97:11044–11049

  45. 45.

    Clarkson MJ, Cardoso MJ, Ridgway GR, Modat M, Leung KK, Rohrer JD, Fox NC, Ourselin S (2011) A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage in-press.

  46. 46.

    Shen L, Saykin AJ, Kim S et al (2010) Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 4:86–95

  47. 47.

    McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ Jr, Holland D, Karow DS, Pung CJ, Brewer JB, Dale AM (2009) Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251:195–205

  48. 48.

    Zinmy A, Szewczyk P, Trypka E, Wojtynska R, Leszek J, Sasiadek M (2011) Quantitative evaluation of changes in the selected white matter tracts using DTI in patients with Alzheimer’s disease and mild cognitive impairment. Progress in Neuroradiology: Neuroimaging of Dementive Syndromes and Diseases, Kazimierz Dolny, May 2011

  49. 49.

    Zinmy A, Szewczyk P, Trypka E, Wojtynska R, Noga L, Leszek J, Sasiadek M (2011) Application of advanced MR techniques in the diagnosis of Alzheimer’s disease and mild cognitive impairment – value of MRS, perfusion and DTI of the posterior cingulate region. Progress in Neuroradiology: Neuroimaging of Dementive Syndromes and Diseases, Kazimierz Dolny, May 2011

  50. 50.

    Herholz K et al (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage 17:302–316

  51. 51.

    McArthur C, Jampana R, Patterson J, Hadley D (2011) Applications of cerebral SPECT. Clin Radiol 66:651–661

  52. 52.

    Yuan Y, Gu ZX, Wei WS (2009) Fluorodeoxyglucose–positron-emission tomography, single-photon emission tomography, and structural MR Imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. Am J Neuroradiol 30:404–410

  53. 53.

    Weiner MW, Aisen PS, Jack CR, Jagust WJ, Trojanowski JQ, Shaw L, Saykin AJ, Morris JC, Cairns N, Beckett LA, Toga A, Green RC, Walter S, Soares H, Snyder P, Siemens E, Potter W, Cole PE, Schmidt M, and the ADNI (2010) The Alzhiemer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia 6:202–211

  54. 54.

    Frisoni GB, Henneman WJP, Weiner MW, Scheltens P, Vellas B, Reynish E, Hudecova J, Hampel H, Burger K, Blennow K, Waldemar G, Johannsen P, Wahlund LO, Zito G, Rossini PM, Winblad B, Barkhof F, and Alzheimer’s Disease Neuroimaging Initiative (2008) The pilot European Alzheimer’s Disease Neuroimaging Initiative (E-ADNI) of the European Alzheimer’s Disease Consortium. Alzheimer’s & Dementia 4(4):255–264

Download references

Author information

Correspondence to Charles A. J. Romanowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romanowski, C.A.J., Wilkinson, I.D. Atrophy: When too much atrophy is too little brain. Neuroradiology 53, 133 (2011). https://doi.org/10.1007/s00234-011-0929-0

Download citation