, Volume 54, Issue 3, pp 189–196 | Cite as

Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

  • Florian Baptist Freimann
  • Kaspar-Josche Streitberger
  • Dieter Klatt
  • Kui Lin
  • Joyce McLaughlin
  • Jürgen Braun
  • Christian SprungEmail author
  • Ingolf SackEmail author
Diagnostic Neuroradiology



Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics.


In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 ± 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters μ and α, related to the inherent rigidity and topology of the mechanical network of brain tissue.


The viscoelastic parameters μ and α were found to be decreased with −25% and −10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, α increased after shunt placement (P < 0.001) to almost normal values whereas μ remained symptomatically low.


The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded.


Normal pressure hydrocephalus Shunt Magnetic resonance elastography (MRE) Viscoelasticity Springpot 


Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5(3):187–210PubMedGoogle Scholar
  2. 2.
    Levine DN (2008) Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol Sci 269(1–2):1–11PubMedCrossRefGoogle Scholar
  3. 3.
    Penn RD, Linninger A (2009) The physics of hydrocephalus. Pediatr Neurosurg 45(3):161–174PubMedCrossRefGoogle Scholar
  4. 4.
    Yamashita F, Sasaki M, Takahashi S, Matsuda H, Kudo K, Narumi S, Terayama Y, Asada T (2010) Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry. Neuroradiology 52(5):381–386PubMedCrossRefGoogle Scholar
  5. 5.
    Chang CC, Asada H, Mimura T, Suzuki S (2009) A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg 111(3):610–617PubMedCrossRefGoogle Scholar
  6. 6.
    Kondziella D, Sonnewald U, Tullberg M, Wikkelso C (2008) Brain metabolism in adult chronic hydrocephalus. J Neurochem 106(4):1515–1524PubMedCrossRefGoogle Scholar
  7. 7.
    Eide PK, Stanisic M (2010) Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg 112(2):414–424PubMedCrossRefGoogle Scholar
  8. 8.
    Hebb AO, Cusimano MD (2001) Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49(5):1166–1184, discussion 1184–1166PubMedGoogle Scholar
  9. 9.
    Graff-Radford NR (2007) Normal pressure hydrocephalus. Neurol Clin 25(3):809–832, vii-viiiPubMedCrossRefGoogle Scholar
  10. 10.
    Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232):1854–1857PubMedCrossRefGoogle Scholar
  11. 11.
    Klatt D, Hamhaber U, Asbach P, Braun J, Sack I (2007) Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 52(24):7281–7294PubMedCrossRefGoogle Scholar
  12. 12.
    Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J (2008) Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 21(3):265–271PubMedCrossRefGoogle Scholar
  13. 13.
    Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed 21:755–764PubMedCrossRefGoogle Scholar
  14. 14.
    Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR Jr, Ehman RL (2008) Magnetic resonance elastography of the brain. Neuroimage 39(1):231–237PubMedCrossRefGoogle Scholar
  15. 15.
    Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, Martus P, Braun J (2009) The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3):652–657PubMedCrossRefGoogle Scholar
  16. 16.
    Wuerfel J, Paul F, Beierbach B, Hamhaber U, Klatt D, Papazoglou S, Zipp F, Martus P, Braun J, Sack I (2010) MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49(3):2520–2525PubMedCrossRefGoogle Scholar
  17. 17.
    Streitberger KJ, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, Lin K, McLaughlin J, Sprung C, Klingebiel R, Sack I (2010) In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. doi: 10.1002/nbm.1602 PubMedGoogle Scholar
  18. 18.
    Mandelbrot BB (1983) The fractal geometry of nature, 1st edn. W. H. Freeman and company, New YorkGoogle Scholar
  19. 19.
    Riek K, Klatt D, Nuzha H, Mueller S, Neumann U, Sack I, Braun J (2011) Wide-range dynamic magnetic resonance elastography. J Biomech 44(7):1380–1386Google Scholar
  20. 20.
    Mori K (2001) Management of idiopathic normal-pressure hydrocephalus: a multiinstitutional study conducted in Japan. J Neurosurg 95(6):970–973PubMedCrossRefGoogle Scholar
  21. 21.
    Sprung C, Miethke C, Schlosser HG, Brock M (2005) The enigma of underdrainage in shunting with hydrostatic valves and possible solutions. Acta Neurochir Suppl 95:229–235PubMedCrossRefGoogle Scholar
  22. 22.
    Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2(4):307–327PubMedCrossRefGoogle Scholar
  23. 23.
    Di Rocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs brain 5(2):81–95PubMedGoogle Scholar
  24. 24.
    Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Pena A, Harris NG, Smielewski P, Fryer T, Donovan T, Coles J, Carpenter A, Pickard JD (2004) Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab 24(1):17–23PubMedCrossRefGoogle Scholar
  25. 25.
    Krauss JK, Regel JP, Vach W, Orszagh M, Jungling FD, Bohus M, Droste DW (1997) White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery 40(3):491–495, discussion 495–496PubMedGoogle Scholar
  26. 26.
    Gurtovenko AA, Blumen A (2005) Generalized Gaussian structures: models for polymer systems with complex topologies. In: Polymer analysis, polymer theory. Advances in polymer science. vol 182. Springer, Berlin, pp 171–282.  doi:10.1007/b135561
  27. 27.
    Klatt D, Papazoglou S, Braun J, Sack I (2010) Viscoelasticity-based magnetic resonance elastography of skeletal muscle. Phys Med Biol 55:6445–6459PubMedCrossRefGoogle Scholar
  28. 28.
    Toma AK, Holl E, Kitchen ND, Watkins LD (2011) Evans' index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68(4):939–944PubMedGoogle Scholar
  29. 29.
    Shiino A, Nishida Y, Yasuda H, Suzuki M, Matsuda M, Inubushi T (2004) Magnetic resonance spectroscopic determination of a neuronal and axonal marker in white matter predicts reversibility of deficits in secondary normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 75(8):1141–1148PubMedCrossRefGoogle Scholar
  30. 30.
    Osuka S, Matsushita A, Yamamoto T, Saotome K, Isobe T, Nagatomo Y, Masumoto T, Komatsu Y, Ishikawa E, Matsumura A (2010) Evaluation of ventriculomegaly using diffusion tensor imaging: correlations with chronic hydrocephalus and atrophy. J Neurosurg 112(4):832–839PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Florian Baptist Freimann
    • 1
  • Kaspar-Josche Streitberger
    • 2
  • Dieter Klatt
    • 2
  • Kui Lin
    • 3
  • Joyce McLaughlin
    • 3
  • Jürgen Braun
    • 4
  • Christian Sprung
    • 1
    Email author
  • Ingolf Sack
    • 2
    Email author
  1. 1.Neurosurgical DepartmentCharité—University Medicine Berlin, Campus Virchow-KlinikumBerlinGermany
  2. 2.Department of RadiologyCharité—University Medicine Berlin, Campus Charité MitteBerlinGermany
  3. 3.Mathematics DepartmentRensselaer Polytechnic InstituteTroyUSA
  4. 4.Institute of Medical InformaticsCharité—University Medicine Campus Benjamin FranklinBerlinGermany

Personalised recommendations