Advertisement

Neuroradiology

, Volume 53, Issue 4, pp 291–302 | Cite as

ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma

  • Martha Nowosielski
  • Wolfgang Recheis
  • Georg Goebel
  • Özgür Güler
  • Gerd Tinkhauser
  • Herwig Kostron
  • Michael Schocke
  • Thaddaeus Gotwald
  • Günther Stockhammer
  • Markus Hutterer
Functional Neuroradiology

Abstract

Introduction

The purpose of this study is to evaluate apparent diffusion coefficient (ADC) maps to distinguish anti-vascular and anti-tumor effects in the course of anti-angiogenic treatment of recurrent high-grade gliomas (rHGG) as compared to standard magnetic resonance imaging (MRI).

Methods

This retrospective study analyzed ADC maps from diffusion-weighted MRI in 14 rHGG patients during bevacizumab/irinotecan (B/I) therapy. Applying image segmentation, volumes of contrast-enhanced lesions in T1 sequences and of hyperintense T2 lesions (hT2) were calculated. hT2 were defined as regions of interest (ROI) and registered to corresponding ADC maps (hT2-ADC). Histograms were calculated from hT2-ADC ROIs. Thereafter, histogram asymmetry termed “skewness” was calculated and compared to progression-free survival (PFS) as defined by the Response Assessment Neuro-Oncology (RANO) Working Group criteria.

Results

At 8–12 weeks follow-up, seven (50%) patients showed a partial response, three (21.4%) patients were stable, and four (28.6%) patients progressed according to RANO criteria. hT2-ADC histograms demonstrated statistically significant changes in skewness in relation to PFS at 6 months. Patients with increasing skewness (n = 11) following B/I therapy had significantly shorter PFS than did patients with decreasing or stable skewness values (n = 3, median percentage change in skewness 54% versus −3%, p = 0.04).

Conclusion

In rHGG patients, the change in ADC histogram skewness may be predictive for treatment response early in the course of anti-angiogenic therapy and more sensitive than treatment assessment based solely on RANO criteria.

Keywords

Recurrent high-grade glioma Anti-angiogenic therapy DWI-MRI ADC histograms Skewness 

Notes

Acknowledgments

We thank Mary Margreiter for the critical reading and helpful comments. M. Nowosielski holds a DOC-FORTE Fellowship from the Austrian Academy of Science at the Department of Neurology, Innsbruck Medical University. Özgür Güler’s work was funded by the Austrian Science Foundation (Project 20604-B13).

Conflict of Interest

We declare that we have no conflict of interest.

References

  1. 1.
    Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578PubMedGoogle Scholar
  2. 2.
    Lamborn KR, Yung WK, Chang SM et al (2008) Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol 10:162–170PubMedCrossRefGoogle Scholar
  3. 3.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRefGoogle Scholar
  4. 4.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  5. 5.
    Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRefGoogle Scholar
  6. 6.
    Jain R, Scarpace LM, Ellika S et al (2009) Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 96:423–431PubMedCrossRefGoogle Scholar
  7. 7.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedGoogle Scholar
  8. 8.
    Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedGoogle Scholar
  9. 9.
    Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233PubMedCrossRefGoogle Scholar
  10. 10.
    Thoeny HC, De Keyzer F, Vandecaveye V et al (2005) Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 237:492–499PubMedCrossRefGoogle Scholar
  11. 11.
    Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109PubMedCrossRefGoogle Scholar
  12. 12.
    Paldino MJ, Barboriak D, Desjardins A, Friedman HS, Vredenburgh JJ (2009) Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme. J Magn Reson Imaging 29:1199–1205PubMedCrossRefGoogle Scholar
  13. 13.
    Pope WB, Kim HJ, Huo J et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252:182–189PubMedCrossRefGoogle Scholar
  14. 14.
    Jain R, Scarpace LM, Ellika S et al (2009) Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 96(3):423–431PubMedCrossRefGoogle Scholar
  15. 15.
    Guzman R, Altrichter S, El-Koussy M et al (2008) Contribution of the apparent diffusion coefficient in perilesional edema for the assessment of brain tumors. J Neuroradiol 35:224–229PubMedCrossRefGoogle Scholar
  16. 16.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  17. 17.
    Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128PubMedCrossRefGoogle Scholar
  18. 18.
    Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor "size" in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol 26:770–776PubMedGoogle Scholar
  19. 19.
    de Groot JF, Fuller G, Kumar AJ et al (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12:233–242PubMedGoogle Scholar
  20. 20.
    Pieper S LB, Schroeder W, Kikinis R (2006) The NA-MIC kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1:698–701Google Scholar
  21. 21.
    Pieper S LB, Schroeder W, Kikinis R (2010) www.3dslicer.org
  22. 22.
    Ballman KV, Buckner JC, Brown PD et al (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 9:29–38PubMedCrossRefGoogle Scholar
  23. 23.
    Sinha G (2008) Expensive cancer drugs with modest benefit ignite debate over solutions. J Natl Cancer Inst 100:1347–1349PubMedCrossRefGoogle Scholar
  24. 24.
    Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765PubMedCrossRefGoogle Scholar
  25. 25.
    Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44:946–953PubMedCrossRefGoogle Scholar
  26. 26.
    Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97:172–187PubMedCrossRefGoogle Scholar
  27. 27.
    Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF (2006) MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66:1258–1260PubMedCrossRefGoogle Scholar
  28. 28.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259PubMedCrossRefGoogle Scholar
  29. 29.
    Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95PubMedCrossRefGoogle Scholar
  30. 30.
    Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40PubMedCrossRefGoogle Scholar
  31. 31.
    Park JW, Kerbel RS, Kelloff GJ et al (2004) Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin Cancer Res 10:3885–3896PubMedCrossRefGoogle Scholar
  32. 32.
    Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32:2–16PubMedCrossRefGoogle Scholar
  33. 33.
    Lee KC, Hall DE, Hoff BA et al (2006) Dynamic imaging of emerging resistance during cancer therapy. Cancer Res 66:4687–4692PubMedCrossRefGoogle Scholar
  34. 34.
    Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar
  35. 35.
    Chenevert TL, Stegman LD, Taylor JM et al (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshikawa MI, Ohsumi S, Sugata S et al (2008) Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 26:222–226PubMedCrossRefGoogle Scholar
  37. 37.
    Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178PubMedCrossRefGoogle Scholar
  38. 38.
    Squillaci E, Manenti G, Cova M et al (2004) Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 24:4175–4179PubMedGoogle Scholar
  39. 39.
    Manenti G, Di Roma M, Mancino S et al (2008) Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med 113:199–213PubMedCrossRefGoogle Scholar
  40. 40.
    Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643PubMedCrossRefGoogle Scholar
  41. 41.
    Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839–846PubMedCrossRefGoogle Scholar
  42. 42.
    Murakami R, Sugahara T, Nakamura H et al (2007) Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 243:493–499PubMedCrossRefGoogle Scholar
  43. 43.
    Reddy JS, Mishra AM, Behari S et al (2006) The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions. Surg Neurol 66:246–250, discussion 250–241PubMedCrossRefGoogle Scholar
  44. 44.
    Gruber SK ML, Medabalmi P, Gruber DB, Golfinos J, Parker E, Narayana A (2010) Change in pattern of relapse in newly diagnosed high-grade glioma following bevacizumab therapy. J Clin Oncol 28:15s (suppl; abstr 2020)Google Scholar
  45. 45.
    Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787PubMedCrossRefGoogle Scholar
  46. 46.
    Rubenstein JL, Kim J, Ozawa T et al (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–314PubMedCrossRefGoogle Scholar
  47. 47.
    Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK (2008) Response criteria for glioma. Nat Clin Pract Oncol 5:634–644PubMedCrossRefGoogle Scholar
  48. 48.
    Chen W, Silverman DH (2008) Advances in evaluation of primary brain tumors. Semin Nucl Med 38:240–250PubMedCrossRefGoogle Scholar
  49. 49.

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martha Nowosielski
    • 1
  • Wolfgang Recheis
    • 2
  • Georg Goebel
    • 3
  • Özgür Güler
    • 4
  • Gerd Tinkhauser
    • 1
  • Herwig Kostron
    • 5
  • Michael Schocke
    • 2
  • Thaddaeus Gotwald
    • 2
  • Günther Stockhammer
    • 1
  • Markus Hutterer
    • 1
    • 6
  1. 1.Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
  2. 2.Department of RadiologyInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Department of Medical Statistics, Informatics and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
  4. 4.4D Visualization Laboratory, University Clinic of Oto-, Rhino- and LaryngologyInnsbruck Medical UniversityInnsbruckAustria
  5. 5.Department of NeurosurgeryInnsbruck Medical UniversityInnsbruckAustria
  6. 6.Department of NeurologyParacelsus Medical University Salzburg–Christian Doppler HospitalSalzburgAustria

Personalised recommendations